Weyaxi's picture
First 400 rows in models, first 250 rows in datasets and spaces
00d44a4
raw
history blame
10 kB
import re
import json
import requests
import pandas as pd
from tqdm import tqdm
from bs4 import BeautifulSoup
from huggingface_hub import HfApi, list_models, list_datasets, list_spaces
import gradio as gr
api = HfApi()
def get_models(org_name, which_one):
all_list = []
if which_one == "models":
things = api.list_models(author=org_name)
elif which_one == "datasets":
things = api.list_datasets(author=org_name)
elif which_one == "spaces":
things = api.list_spaces(author=org_name)
for i in things:
i = i.__dict__
json_format_data = {"id": i['id'], "downloads": i['downloads'], "likes": i['likes']} if which_one != "spaces" else {"id": i['id'], "downloads": 0, "likes": i['likes']}
all_list.append(json_format_data)
df_all_list = (pd.DataFrame(all_list))
return df_all_list
def get_most(df_for_most_function):
download_sorted_df = df_for_most_function.sort_values(by=['downloads'], ascending=False)
most_downloaded = download_sorted_df.iloc[0]
like_sorted_df = df_for_most_function.sort_values(by=['likes'], ascending=False)
most_liked = like_sorted_df.iloc[0]
return {"Most Download": {"id": most_downloaded['id'], "downloads": most_downloaded['downloads'], "likes": most_downloaded['likes']}, "Most Likes": {"id": most_liked['id'], "downloads": most_liked['downloads'], "likes": most_liked['likes']}}
def get_sum(df_for_sum_function):
sum_downloads = sum(df_for_sum_function['downloads'].tolist())
sum_likes = sum(df_for_sum_function['likes'].tolist())
return {"Downloads": sum_downloads, "Likes": sum_likes}
def get_openllm_leaderboard():
url = 'https://huggingfaceh4-open-llm-leaderboard.hf.space/'
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
script_elements = soup.find_all('script')
data = json.loads(str(script_elements[1])[31:-10])
component_index = 11
pattern = r'href="([^"]*)"'
zero_or_one = 1
result_list = []
i = 0
while True:
try:
unfiltered = data['components'][component_index]['props']['value']['data'][i][zero_or_one].rstrip("\n")
normal_name = re.search(pattern, unfiltered).group(1)
normal_name = "/".join(normal_name.split("/")[-2:])
result_list.append(normal_name)
i += 1
except (IndexError, AttributeError):
return result_list
def get_ranking(model_list, target_org):
for index, model in enumerate(model_list):
if model.split("/")[0].lower() == target_org.lower():
return [index+1, model]
return "Not Found"
def make_leaderboard(orgs, which_one):
data_rows = []
open_llm_leaderboard = get_openllm_leaderboard() if which_one == "models" else None
for org in tqdm(orgs, desc=f"Scraping Organizations ({which_one})", position=0, leave=True):
df = get_models(org, which_one)
if len(df) == 0:
continue
num_things = len(df)
sum_info = get_sum(df)
most_info = get_most(df)
if which_one == "models":
open_llm_leaderboard_get_org = get_ranking(open_llm_leaderboard, org)
data_rows.append({
"Organization Name": org,
"Total Downloads": sum_info["Downloads"],
"Total Likes": sum_info["Likes"],
"Number of Models": num_things,
"Best Model On Open LLM Leaderboard": open_llm_leaderboard_get_org[1] if open_llm_leaderboard_get_org != "Not Found" else open_llm_leaderboard_get_org,
"Best Rank On Open LLM Leaderboard": open_llm_leaderboard_get_org[0] if open_llm_leaderboard_get_org != "Not Found" else open_llm_leaderboard_get_org,
"Average Downloads per Model": int(sum_info["Downloads"] / num_things) if num_things != 0 else 0,
"Average Likes per Model": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
"Most Downloaded Model": most_info["Most Download"]["id"],
"Most Download Count": most_info["Most Download"]["downloads"],
"Most Liked Model": most_info["Most Likes"]["id"],
"Most Like Count": most_info["Most Likes"]["likes"]
})
elif which_one == "datasets":
data_rows.append({
"Organization Name": org,
"Total Downloads": sum_info["Downloads"],
"Total Likes": sum_info["Likes"],
"Number of Datasets": num_things,
"Average Downloads per Dataset": int(sum_info["Downloads"] / num_things) if num_things != 0 else 0,
"Average Likes per Dataset": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
"Most Downloaded Dataset": most_info["Most Download"]["id"],
"Most Download Count": most_info["Most Download"]["downloads"],
"Most Liked Dataset": most_info["Most Likes"]["id"],
"Most Like Count": most_info["Most Likes"]["likes"]
})
elif which_one == "spaces":
data_rows.append({
"Organization Name": org,
"Total Likes": sum_info["Likes"],
"Number of Spaces": num_things,
"Average Likes per Space": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
"Most Liked Space": most_info["Most Likes"]["id"],
"Most Like Count": most_info["Most Likes"]["likes"]
})
leaderboard = pd.DataFrame(data_rows)
temp = ["Total Downloads"] if which_one != "spaces" else ["Total Likes"]
leaderboard = leaderboard.sort_values(by=temp, ascending=False)
leaderboard.insert(0, "Serial Number", range(1, len(leaderboard) + 1))
return leaderboard
with open("org_names.txt", "r") as f:
org_names_in_list = [i.rstrip("\n") for i in f.readlines()]
INTRODUCTION_TEXT = f"""
🎯 The Organization Leaderboard aims to track organizations ranking. This space is inspired by [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
## Dataframes Available:
- 🏛️ Models
- 📊 Datasets
- 🚀 Spaces
## Backend
🛠️ The leaderboard's backend mainly runs the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api).
🛠️ Organization names are being retrieved using web scrabing ([HUggingface Organizations](https://huggingface.co/organizations))
**🌐 Note:** In model's dataframe there is some columns related to [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). These datas are also being retrieved with web scrabing.
"""
def clickable(x, which_one):
if which_one == "models":
if x != "Not Found":
return f'<a target="_blank" href="https://huggingface.co/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
else:
return "Not Found"
else:
return f'<a target="_blank" href="https://huggingface.co/{which_one}/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
def models_df_to_clickable(df, columns, which_one):
for column in columns:
if column == "Organization Name":
df[column] = df[column].apply(lambda x: clickable(x, "models"))
else:
df[column] = df[column].apply(lambda x: clickable(x, which_one))
return df
demo = gr.Blocks()
with gr.Blocks() as demo:
gr.Markdown("""<h1 align="center" id="space-title">🤗 Organization Leaderboard</h1>""")
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.TabItem("🏛️ Models", id=1):
columns_to_convert = ["Organization Name", "Best Model On Open LLM Leaderboard", "Most Downloaded Model", "Most Liked Model"]
models_df = make_leaderboard(org_names_in_list, "models")
models_df = models_df_to_clickable(models_df, columns_to_convert, "models")
headers = ["🔢 Serial Number", "🏢 Organization Name", "📥 Total Downloads", "👍 Total Likes", "🤖 Number of Models", "🏆 Best Model On Open LLM Leaderboard", "🥇 Best Rank On Open LLM Leaderboard", "📊 Average Downloads per Model", "📈 Average Likes per Model", "🚀 Most Downloaded Model", "📈 Most Download Count", "❤️ Most Liked Model", "👍 Most Like Count"]
gr.Dataframe(models_df.head(400), headers=headers, interactive=True, datatype=["str", "markdown", "str", "str", "str", "markdown", "str", "str", "str", "markdown", "str", "markdown", "str"])
with gr.TabItem("📊 Dataset", id=2):
columns_to_convert = ["Organization Name", "Most Downloaded Dataset", "Most Liked Dataset"]
dataset_df = make_leaderboard(org_names_in_list, "datasets")
dataset_df = models_df_to_clickable(dataset_df, columns_to_convert, "datasets")
headers = ["🔢 Serial Number", "🏢 Organization Name", "📥 Total Downloads", "👍 Total Likes", "📊 Number of Datasets", "📊 Average Downloads per Dataset", "📈 Average Likes per Dataset", "🚀 Most Downloaded Dataset", "📈 Most Download Count", "❤️ Most Liked Dataset", "👍 Most Like Count"]
gr.Dataframe(dataset_df.head(250), headers=headers, interactive=False, datatype=["str", "markdown", "str", "str", "str", "str", "str", "markdown", "str", "markdown", "str"])
with gr.TabItem("🚀 Spaces", id=3):
columns_to_convert = ["Organization Name", "Most Liked Space"]
spaces_df = make_leaderboard(org_names_in_list, "spaces")
spaces_df = models_df_to_clickable(spaces_df, columns_to_convert, "spaces")
headers = ["🔢 Serial Number", "🏢 Organization Name", "👍 Total Likes", "🚀 Number of Spaces", "📈 Average Likes per Space", "❤️ Most Liked Space", "👍 Most Like Count"]
gr.Dataframe(spaces_df.head(250), headers=headers, interactive=False, datatype=["str", "markdown", "str", "str", "str", "markdown", "str"])
demo.launch()