File size: 3,270 Bytes
eb2e00a
 
 
 
 
6d64f28
 
 
 
 
 
 
 
 
 
 
 
eb2e00a
6d64f28
 
 
 
 
 
 
 
 
 
 
 
 
eb2e00a
 
 
 
 
 
 
 
 
 
 
6d64f28
eb2e00a
6d64f28
eb2e00a
 
 
 
6d64f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb2e00a
 
 
 
 
 
6d64f28
eb2e00a
6d64f28
 
eb2e00a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import gradio as gr
from huggingface_hub import InferenceClient

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Function to convert days to score
def days_to_score(days):
    if days == 0:
        return 0
    elif days == 1:
        return 1
    elif 2 <= days <= 3:
        return 2
    elif 4 <= days <= 7:
        return 3
    else:
        return 0  # This case should not happen as the input sliders are restricted

# Function to diagnose GERD based on input days
def diagnose_gerd_responses(responses):
    scores = [days_to_score(d) for d in responses]
    total_score = sum(scores)
    if total_score <= 7:
        diagnosis = "Kemungkinan Anda tidak menderita GERD."
    elif 8 <= total_score <= 18:
        diagnosis = "Kemungkinan Anda menderita GERD. Konsultasikan dengan penyedia layanan kesehatan untuk evaluasi lebih lanjut."
    else:
        diagnosis = "Skor di luar jangkauan. Pastikan Anda memasukkan nilai dengan benar."
    return diagnosis

def respond(message, history, system_message, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""
    user_responses = []

    for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
        token = message.choices[0].delta.content
        response += token
        yield response

    if "nyeri ulu hati" in message:
        user_responses.append(int(message))
        response = "Berapa hari dalam 7 hari terakhir Anda mengalami nyeri ulu hati?"
    elif "regurgitasi" in message:
        user_responses.append(int(message))
        response = "Berapa hari dalam 7 hari terakhir Anda mengalami regurgitasi?"
    elif "mual" in message:
        user_responses.append(int(message))
        response = "Berapa hari dalam 7 hari terakhir Anda mengalami mual?"
    elif "sulit tidur" in message:
        user_responses.append(int(message))
        response = "Berapa hari dalam 7 hari terakhir Anda mengalami kesulitan tidur karena nyeri ulu hati?"
    elif "minum obat" in message:
        user_responses.append(int(message))
        response = "Berapa hari dalam 7 hari terakhir Anda minum obat tambahan untuk nyeri ulu hati?"

    if len(user_responses) == 6:
        diagnosis = diagnose_gerd_responses(user_responses)
        response = diagnosis

    yield response

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
    ],
    title="Nexus-Gerd-Bot",
    description="Chat dengan Nexus-Gerd-Bot untuk menilai kemungkinan GERD berdasarkan gejala yang Anda alami dalam 7 hari terakhir."
)

if __name__ == "__main__":
    demo.launch()