File size: 4,009 Bytes
5ba996d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487841d
5ba996d
 
 
 
487841d
5ba996d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import streamlit as st
import tensorflow as tf
from keras.layers import Input, Dense, Embedding, MultiHeadAttention
from keras.layers import Dropout, LayerNormalization
from keras.models import Model
from keras.utils import pad_sequences
import numpy as np

class TransformerChatbot(Model):
    def __init__(self, vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate):
        super(TransformerChatbot, self).__init__()
        self.embedding = Embedding(vocab_size, d_model)
        self.attention = MultiHeadAttention(num_heads=n_head, key_dim=d_model)
        self.norm1 = LayerNormalization(epsilon=1e-6)
        self.dropout1 = Dropout(dropout_rate)
        self.dense1 = Dense(ff_dim, activation="relu")
        self.dense2 = Dense(d_model)
        self.norm2 = LayerNormalization(epsilon=1e-6)
        self.dropout2 = Dropout(dropout_rate)
        self.flatten = tf.keras.layers.Flatten()
        self.fc = Dense(vocab_size, activation="softmax")
        self.max_len = max_len

    def call(self, inputs):
        x = self.embedding(inputs)
        # Masking
        mask = self.create_padding_mask(inputs)
        attn_output = self.attention(x, x, x, attention_mask=mask)
        x = x + attn_output
        x = self.norm1(x)
        x = self.dropout1(x)
        x = self.dense1(x)
        x = self.dense2(x)
        x = self.norm2(x)
        x = self.dropout2(x)
        x = self.fc(x)
        return x

    def create_padding_mask(self, seq):
        mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
        return mask[:, tf.newaxis, tf.newaxis, :]
st.title("UniGLM TEXT completion Model")
st.subheader("Next Word Prediction AI Model by Webraft-AI")
#Picking what NLP task you want to do
option = st.selectbox('Model',('1')) #option is stored in this variable
#Textbox for text user is entering
st.subheader("Enter the text you'd like to analyze.")
text = st.text_input('Enter word: ') #text is stored in this variable

if option == '1':
    loaded_dict = np.load("dict_predict3.bin.npz", allow_pickle=True)
    word_to_num = loaded_dict["word_to_num"].item()
    num_to_word = loaded_dict["num_to_word"].item()
    X = loaded_dict["X"].item()
    Y = loaded_dict["Y"].item()
    X_train = pad_sequences([X])
    y_train = pad_sequences([Y])
    vocab_size = 100000
    max_len = 1
    d_model = 64  # 64 , 1024
    n_head = 4  # 8 , 16
    ff_dim = 256  # 256 , 2048
    dropout_rate = 0.1  # 0.5 , 0.2


    chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
    chatbot.load_weights("predict3")
    chatbot.build(input_shape=(None, max_len)) # Build the model
    chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
    other_text1 = text
    for i in range(1):

        other_text1 = other_text1.lower()
        other_words1 = other_text1.split()
        if len(other_words1) > 1:
            st.write("Error: Found more than 1 word . There should not be more than one word in the prompt ")
        for word in other_words1:
            if word not in word_to_num:
                st.write("Error: The word ` ",word," ` doesn't exist in the vocabulary and hence the model wasn't train on that. ")
            else:
                other_num1 = word_to_num[word]

        given_X1 = other_num1
        input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
        output_sentence = other_text1 + ""
        for _ in range(16):
            predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
            predicted_token = predicted_token.item()
            out = num_to_word[predicted_token]
            

            output_sentence += " " + out
            if out == ".":
                break
            given_X1 = given_X1[1:]
            given_X1.append(predicted_token)
            input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
        out = output_sentence
        
    
else:
    out = "Wrong Model"
    
st.write("Predicted Text: ")
st.write(out)