from flask import Flask, render_template, request, redirect, url_for, flash import os from joblib import load import numpy as np app = Flask(__name__) # Set the secret key for session management app.secret_key = os.urandom(24) # Configurations UPLOAD_FOLDER = "uploads/" app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER app.config['DEBUG'] = True # Enable debugging during development app.config['ENV'] = 'development' # Load models gia_model = load("Model/linear_regression_model_gia_price.joblib") grade_model = load("Model/linear_regression_model_grade_price.joblib") bygrade_model = load("Model/linear_regression_model_bygrade_price.joblib") makable_model = load("Model/linear_regression_model_makable_price.joblib") # Load label encoders for categorical features (renamed variable to avoid conflict with built-in list) encoder_list = ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngLab'] loaded_label_encoder = {} for val in encoder_list: encoder_path = f"Label_encoders/label_encoder_{val}.joblib" loaded_label_encoder[val] = load(encoder_path) @app.route('/', methods=['GET']) def home(): return render_template('home.html') @app.route('/predict', methods=['GET', 'POST']) def predict(): # Redirect GET requests back to the home page if request.method == 'GET': return redirect(url_for('home')) try: # Retrieve form data and strip any extra spaces ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngLab', 'EngAmt', Tag = request.form.get('Tag', '').strip() # ICarat = request.form.get('ICarat', '').strip() # MkblCarat = request.form.get('MkblCarat', '').strip() # SawLossCarat = request.form.get('SawLossCarat', '').strip() # CrapsCarat = request.form.get('CrapsCarat', '').strip() # EngGraphCts = request.form.get('EngGraphCts', '').strip() EngCts = request.form.get('EngCts', '').strip() EngShp = request.form.get('EngShp', '').strip() EngQua = request.form.get('EngQua', '').strip() EngCol = request.form.get('EngCol', '').strip() EngCut = request.form.get('EngCut', '').strip() EngPol = request.form.get('EngPol', '').strip() EngSym = request.form.get('EngSym', '').strip() EngFlo = request.form.get('EngFlo', '').strip() EngNts = request.form.get('EngNts', '').strip() EngMikly = request.form.get('EngMikly', '').strip() EngLab = request.form.get('EngLab', '').strip() EngAmt = request.form.get('EngAmt', '').strip() if EngLab == "nan": # or if not EngLab: EngLab = np.nan else: EngLab = EngLab # remains the same # Check if any required field is empty if not all([Tag, #ICarat, MkblCarat, SawLossCarat, CrapsCarat, EngGraphCts, EngCts, EngShp, EngQua, EngCol, EngCut, EngPol, EngSym, EngFlo, EngNts, EngMikly, EngLab, EngAmt]): flash("Please fill all the fields", "error") return redirect(url_for('home')) # Transform categorical features using loaded label encoders Tag = loaded_label_encoder['Tag'].transform([Tag])[0] EngShp = loaded_label_encoder['EngShp'].transform([EngShp])[0] EngQua = loaded_label_encoder['EngQua'].transform([EngQua])[0] EngCol = loaded_label_encoder['EngCol'].transform([EngCol])[0] EngCut = loaded_label_encoder['EngCut'].transform([EngCut])[0] EngPol = loaded_label_encoder['EngPol'].transform([EngPol])[0] EngSym = loaded_label_encoder['EngSym'].transform([EngSym])[0] EngFlo = loaded_label_encoder['EngFlo'].transform([EngFlo])[0] EngNts = loaded_label_encoder['EngNts'].transform([EngNts])[0] EngMikly = loaded_label_encoder['EngMikly'].transform([EngMikly])[0] EngLab = loaded_label_encoder['EngLab'].transform([EngLab])[0] # Convert numeric fields to float # ICarat = float(ICarat) # MkblCarat = float(MkblCarat) # SawLossCarat = float(SawLossCarat) # CrapsCarat = float(CrapsCarat) # EngGraphCts = float(EngGraphCts) EngCts = float(EngCts) EngAmt = float(EngAmt) # Prepare input data for prediction input_features = [[Tag, #ICarat, MkblCarat, SawLossCarat, CrapsCarat, EngGraphCts, EngCts, EngShp, EngQua, EngCol, EngCut, EngPol, EngSym, EngFlo, EngNts, EngMikly, EngLab, EngAmt]] # Make predictions gia_price = gia_model.predict(input_features)[0] grade_price = grade_model.predict(input_features)[0] bygrade_price = bygrade_model.predict(input_features)[0] makable_price = makable_model.predict(input_features)[0] gia_diff = EngAmt - gia_price grade_diff = EngAmt - grade_price bygrade_diff = EngAmt - bygrade_price makable_diff = EngAmt - makable_price except Exception as e: flash(f"Error in calculating the price: {e}", "error") return redirect(url_for('home')) return render_template('results.html', gia_price=gia_price, grade_price=grade_price, bygrade_price=bygrade_price, makable_price=makable_price, gia_diff=gia_diff,grade_diff=grade_diff,bygrade_diff=bygrade_diff, makable_diff=makable_diff) if __name__ == "__main__": app.run(debug=True, use_reloader=False)