File size: 5,712 Bytes
95574f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1d6125
 
 
 
95574f4
 
 
 
 
d1d6125
95574f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from flask import Flask, render_template, request, redirect, url_for, flash
import os
from joblib import load
import numpy as np

app = Flask(__name__)

# Set the secret key for session management
app.secret_key = os.urandom(24)

# Configurations
UPLOAD_FOLDER = "uploads/"
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['DEBUG'] = True  # Enable debugging during development
app.config['ENV'] = 'development'

# Load models
gia_model = load("Model/linear_regression_model_gia_price.joblib")
grade_model = load("Model/linear_regression_model_grade_price.joblib")
bygrade_model = load("Model/linear_regression_model_bygrade_price.joblib")
makable_model = load("Model/linear_regression_model_makable_price.joblib")

# Load label encoders for categorical features (renamed variable to avoid conflict with built-in list)
encoder_list = ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngLab']
loaded_label_encoder = {}
for val in encoder_list:
    encoder_path = f"Label_encoders/label_encoder_{val}.joblib"
    loaded_label_encoder[val] = load(encoder_path)

@app.route('/', methods=['GET'])
def home():
    return render_template('home.html')

@app.route('/predict', methods=['GET', 'POST'])
def predict():
    # Redirect GET requests back to the home page
    if request.method == 'GET':
        return redirect(url_for('home'))

    try:
        # Retrieve form data and strip any extra spaces ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngLab', 'EngAmt',
        Tag = request.form.get('Tag', '').strip()                        
        # ICarat = request.form.get('ICarat', '').strip()
        # MkblCarat = request.form.get('MkblCarat', '').strip()  
        # SawLossCarat = request.form.get('SawLossCarat', '').strip()
        # CrapsCarat = request.form.get('CrapsCarat', '').strip()
        # EngGraphCts = request.form.get('EngGraphCts', '').strip()
        EngCts = request.form.get('EngCts', '').strip()
        EngShp = request.form.get('EngShp', '').strip()
        EngQua = request.form.get('EngQua', '').strip()
        EngCol = request.form.get('EngCol', '').strip()
        EngCut = request.form.get('EngCut', '').strip()
        EngPol = request.form.get('EngPol', '').strip()
        EngSym = request.form.get('EngSym', '').strip()
        EngFlo = request.form.get('EngFlo', '').strip()
        EngNts = request.form.get('EngNts', '').strip()
        EngMikly = request.form.get('EngMikly', '').strip()
        EngLab = request.form.get('EngLab', '').strip()
        EngAmt = request.form.get('EngAmt', '').strip()
        
        if EngLab == "nan":  # or if not EngLab:
            EngLab = np.nan
        else:
            EngLab = EngLab  # remains the same

        # Check if any required field is empty
        if not all([Tag, 
                    #ICarat, MkblCarat, SawLossCarat, CrapsCarat, EngGraphCts, 
                    EngCts, EngShp, EngQua, EngCol, 
                    EngCut, EngPol, EngSym, EngFlo, EngNts, EngMikly, 
                    EngLab, EngAmt]):
            flash("Please fill all the fields", "error")
            return redirect(url_for('home'))
        
        # Transform categorical features using loaded label encoders
        Tag = loaded_label_encoder['Tag'].transform([Tag])[0]
        EngShp = loaded_label_encoder['EngShp'].transform([EngShp])[0] 
        EngQua = loaded_label_encoder['EngQua'].transform([EngQua])[0]
        EngCol = loaded_label_encoder['EngCol'].transform([EngCol])[0]
        EngCut = loaded_label_encoder['EngCut'].transform([EngCut])[0]
        EngPol = loaded_label_encoder['EngPol'].transform([EngPol])[0]
        EngSym = loaded_label_encoder['EngSym'].transform([EngSym])[0]
        EngFlo = loaded_label_encoder['EngFlo'].transform([EngFlo])[0]
        EngNts = loaded_label_encoder['EngNts'].transform([EngNts])[0]
        EngMikly = loaded_label_encoder['EngMikly'].transform([EngMikly])[0]
        EngLab = loaded_label_encoder['EngLab'].transform([EngLab])[0]

        # Convert numeric fields to float
        # ICarat = float(ICarat)
        # MkblCarat = float(MkblCarat)
        # SawLossCarat = float(SawLossCarat)
        # CrapsCarat = float(CrapsCarat)
        # EngGraphCts = float(EngGraphCts)
        EngCts = float(EngCts)
        EngAmt = float(EngAmt)
        
        # Prepare input data for prediction
        input_features = [[Tag, 
                           #ICarat, MkblCarat, SawLossCarat, CrapsCarat, EngGraphCts,
                           EngCts, EngShp, EngQua, EngCol, EngCut, 
                           EngPol, EngSym, EngFlo, EngNts, EngMikly, EngLab, EngAmt]]
        
        # Make predictions
        gia_price = gia_model.predict(input_features)[0]
        grade_price = grade_model.predict(input_features)[0]
        bygrade_price = bygrade_model.predict(input_features)[0]
        makable_price = makable_model.predict(input_features)[0]
        
        gia_diff = EngAmt - gia_price
        grade_diff = EngAmt - grade_price 
        bygrade_diff = EngAmt - bygrade_price
        makable_diff = EngAmt - makable_price

    except Exception as e:
        flash(f"Error in calculating the price: {e}", "error")
        return redirect(url_for('home'))

    return render_template('results.html', gia_price=gia_price, grade_price=grade_price, 
                           bygrade_price=bygrade_price, makable_price=makable_price,
                           gia_diff=gia_diff,grade_diff=grade_diff,bygrade_diff=bygrade_diff,
                           makable_diff=makable_diff)

if __name__ == "__main__":
    app.run(debug=True, use_reloader=False)