Spaces:
Sleeping
Sleeping
Update utils/model.py
Browse files- utils/model.py +98 -89
utils/model.py
CHANGED
|
@@ -1,89 +1,98 @@
|
|
| 1 |
-
import spacy
|
| 2 |
-
from spacy.training import Example
|
| 3 |
-
from spacy.util import minibatch, compounding
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
from spacy.tokens import DocBin
|
| 6 |
-
import random
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
"
|
| 38 |
-
"
|
| 39 |
-
"
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
if
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spacy
|
| 2 |
+
from spacy.training import Example
|
| 3 |
+
from spacy.util import minibatch, compounding
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from spacy.tokens import DocBin
|
| 6 |
+
import random
|
| 7 |
+
import shutil
|
| 8 |
+
|
| 9 |
+
# Load the training data from the .spacy file
|
| 10 |
+
def load_data_from_spacy_file(file_path):
|
| 11 |
+
# Initialize a blank English model to ensure compatibility
|
| 12 |
+
nlp = spacy.blank("en")
|
| 13 |
+
|
| 14 |
+
# Load the DocBin object and get documents
|
| 15 |
+
try:
|
| 16 |
+
doc_bin = DocBin().from_disk(file_path)
|
| 17 |
+
docs = list(doc_bin.get_docs(nlp.vocab))
|
| 18 |
+
return docs
|
| 19 |
+
except Exception as e:
|
| 20 |
+
print(f"Error loading data from .spacy file: {e}")
|
| 21 |
+
return []
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# Train model function
|
| 25 |
+
def train_model(epochs, model_path):
|
| 26 |
+
# Initialize a blank English model
|
| 27 |
+
nlp = spacy.blank("en")
|
| 28 |
+
|
| 29 |
+
# Create an NER component and add it to the pipeline
|
| 30 |
+
if "ner" not in nlp.pipe_names:
|
| 31 |
+
ner = nlp.add_pipe("ner")
|
| 32 |
+
|
| 33 |
+
nlp.add_pipe("sentencizer")
|
| 34 |
+
|
| 35 |
+
# Define all possible entity labels
|
| 36 |
+
labels = [
|
| 37 |
+
"PERSON", "CONTACT", "EMAIL", "ABOUT", "EXPERIENCE", "YEARS_EXPERIENCE",
|
| 38 |
+
"UNIVERSITY", "SOFT_SKILL", "INSTITUTE", "LAST_QUALIFICATION_YEAR", "JOB_TITLE",
|
| 39 |
+
"COMPANY", "COURSE", "DOB", "HOBBIES", "LINK", "SCHOOL", "QUALIFICATION",
|
| 40 |
+
"LANGUAGE", "LOCATION", "PROJECTS", "SKILL", "CERTIFICATE"
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
# Add labels to the NER component
|
| 44 |
+
for label in labels:
|
| 45 |
+
ner.add_label(label)
|
| 46 |
+
|
| 47 |
+
# Load the training data
|
| 48 |
+
train_data = load_data_from_spacy_file("./data/Spacy_data.spacy")
|
| 49 |
+
|
| 50 |
+
# Start the training
|
| 51 |
+
optimizer = nlp.begin_training()
|
| 52 |
+
|
| 53 |
+
epoch_losses = []
|
| 54 |
+
best_loss = float('inf')
|
| 55 |
+
|
| 56 |
+
# Training loop
|
| 57 |
+
for epoch in range(epochs):
|
| 58 |
+
losses = {}
|
| 59 |
+
random.shuffle(train_data) # Shuffle data for better training
|
| 60 |
+
|
| 61 |
+
# Create minibatches
|
| 62 |
+
batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
|
| 63 |
+
|
| 64 |
+
for batch in batches:
|
| 65 |
+
texts, annotations = zip(*[(doc.text, {"entities": [(ent.start_char, ent.end_char, ent.label_) for ent in doc.ents]}) for doc in batch])
|
| 66 |
+
|
| 67 |
+
# Convert to Example objects
|
| 68 |
+
examples = [Example.from_dict(nlp.make_doc(text), annotation) for text, annotation in zip(texts, annotations)]
|
| 69 |
+
|
| 70 |
+
# Update the model
|
| 71 |
+
nlp.update(examples, sgd=optimizer, drop=0.35, losses=losses)
|
| 72 |
+
|
| 73 |
+
current_loss = losses.get("ner", float('inf'))
|
| 74 |
+
epoch_losses.append(current_loss)
|
| 75 |
+
|
| 76 |
+
print(f"Losses at epoch {epoch + 1}: {losses}")
|
| 77 |
+
|
| 78 |
+
# Stop training if the loss is zero
|
| 79 |
+
if current_loss == 0:
|
| 80 |
+
break
|
| 81 |
+
|
| 82 |
+
# Save the best model
|
| 83 |
+
if current_loss < best_loss:
|
| 84 |
+
best_loss = current_loss
|
| 85 |
+
# Save to a temporary path
|
| 86 |
+
temp_model_path = model_path + "_temp"
|
| 87 |
+
nlp.to_disk(temp_model_path)
|
| 88 |
+
|
| 89 |
+
# Use shutil to move the model to the final path
|
| 90 |
+
if os.path.exists(model_path):
|
| 91 |
+
shutil.rmtree(model_path) # Remove the old model if it exists
|
| 92 |
+
shutil.copytree(temp_model_path, model_path) # Copy the temp model to the final path
|
| 93 |
+
shutil.rmtree(temp_model_path) # Remove the temporary model directory
|
| 94 |
+
|
| 95 |
+
# Final save after training
|
| 96 |
+
nlp.to_disk(model_path)
|
| 97 |
+
|
| 98 |
+
return epoch_losses
|