WebashalarForML's picture
Update utils/model.py
83f32c2 verified
import spacy
from spacy.training import Example
from spacy.util import minibatch, compounding
from pathlib import Path
from spacy.tokens import DocBin
import random
import shutil
import os
def load_data_from_spacy_file(file_path):
"""Load training data from .spacy file."""
nlp = spacy.blank("en")
try:
doc_bin = DocBin().from_disk(file_path)
docs = list(doc_bin.get_docs(nlp.vocab))
print(f"Loaded {len(docs)} documents from {file_path}.")
return docs
except Exception as e:
print(f"Error loading data from .spacy file: {e}")
return []
def train_model(epochs, model_path):
"""Train NER model."""
nlp = spacy.blank("en")
# Add the NER pipeline
if "ner" not in nlp.pipe_names:
ner = nlp.add_pipe("ner")
nlp.add_pipe("sentencizer") # Optional component to split sentences
# Define entity labels
labels = [
"PERSON", "CONTACT", "EMAIL", "ABOUT", "EXPERIENCE", "YEARS_EXPERIENCE",
"UNIVERSITY", "SOFT_SKILL", "INSTITUTE", "LAST_QUALIFICATION_YEAR", "JOB_TITLE",
"COMPANY", "COURSE", "DOB", "HOBBIES", "LINK", "SCHOOL", "QUALIFICATION",
"LANGUAGE", "LOCATION", "PROJECTS", "SKILL", "CERTIFICATE"
]
# Add the labels to the NER pipeline
for label in labels:
ner.add_label(label)
# Load training data
train_data = load_data_from_spacy_file("./data/Spacy_data.spacy")
# Verify if data was loaded correctly
if not train_data:
print("No training data found. Exiting training.")
return
optimizer = nlp.begin_training()
epoch_losses = []
best_loss = float('inf')
# Start training loop
for epoch in range(epochs):
losses = {}
random.shuffle(train_data) # Shuffle data
# Create batches
batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
# Extract texts and annotations
try:
texts, annotations = zip(
*[(doc.text, {"entities": [(ent.start_char, ent.end_char, ent.label_) for ent in doc.ents]})
for doc in batch]
)
except ValueError as e:
print(f"Error processing batch: {e}")
continue
# Create Example objects
examples = [Example.from_dict(nlp.make_doc(text), annotation)
for text, annotation in zip(texts, annotations)]
# Update the model
nlp.update(examples, sgd=optimizer, drop=0.35, losses=losses)
# Record loss for this epoch
current_loss = losses.get("ner", float('inf'))
epoch_losses.append(current_loss)
print(f"Losses at epoch {epoch + 1}: {losses}")
# Save the best model
if current_loss < best_loss:
best_loss = current_loss
temp_model_path = model_path + "_temp"
nlp.to_disk(temp_model_path)
# Safely move to the final path
if os.path.exists(model_path):
shutil.rmtree(model_path)
shutil.copytree(temp_model_path, model_path)
shutil.rmtree(temp_model_path)
# Save the final model
nlp.to_disk(model_path)
print(f"Training completed. Final model saved at: {model_path}")
return epoch_losses