Spaces:
Sleeping
Sleeping
import spacy | |
from spacy.training import Example | |
from spacy.util import minibatch, compounding | |
from pathlib import Path | |
from spacy.tokens import DocBin | |
import random | |
import shutil | |
import os | |
def load_data_from_spacy_file(file_path): | |
"""Load training data from .spacy file.""" | |
nlp = spacy.blank("en") | |
try: | |
doc_bin = DocBin().from_disk(file_path) | |
docs = list(doc_bin.get_docs(nlp.vocab)) | |
print(f"Loaded {len(docs)} documents from {file_path}.") | |
return docs | |
except Exception as e: | |
print(f"Error loading data from .spacy file: {e}") | |
return [] | |
def train_model(epochs, model_path): | |
"""Train NER model.""" | |
nlp = spacy.blank("en") | |
# Add the NER pipeline | |
if "ner" not in nlp.pipe_names: | |
ner = nlp.add_pipe("ner") | |
nlp.add_pipe("sentencizer") # Optional component to split sentences | |
# Define entity labels | |
labels = [ | |
"PERSON", "CONTACT", "EMAIL", "ABOUT", "EXPERIENCE", "YEARS_EXPERIENCE", | |
"UNIVERSITY", "SOFT_SKILL", "INSTITUTE", "LAST_QUALIFICATION_YEAR", "JOB_TITLE", | |
"COMPANY", "COURSE", "DOB", "HOBBIES", "LINK", "SCHOOL", "QUALIFICATION", | |
"LANGUAGE", "LOCATION", "PROJECTS", "SKILL", "CERTIFICATE" | |
] | |
# Add the labels to the NER pipeline | |
for label in labels: | |
ner.add_label(label) | |
# Load training data | |
train_data = load_data_from_spacy_file("./data/Spacy_data.spacy") | |
# Verify if data was loaded correctly | |
if not train_data: | |
print("No training data found. Exiting training.") | |
return | |
optimizer = nlp.begin_training() | |
epoch_losses = [] | |
best_loss = float('inf') | |
# Start training loop | |
for epoch in range(epochs): | |
losses = {} | |
random.shuffle(train_data) # Shuffle data | |
# Create batches | |
batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001)) | |
for batch in batches: | |
# Extract texts and annotations | |
try: | |
texts, annotations = zip( | |
*[(doc.text, {"entities": [(ent.start_char, ent.end_char, ent.label_) for ent in doc.ents]}) | |
for doc in batch] | |
) | |
except ValueError as e: | |
print(f"Error processing batch: {e}") | |
continue | |
# Create Example objects | |
examples = [Example.from_dict(nlp.make_doc(text), annotation) | |
for text, annotation in zip(texts, annotations)] | |
# Update the model | |
nlp.update(examples, sgd=optimizer, drop=0.35, losses=losses) | |
# Record loss for this epoch | |
current_loss = losses.get("ner", float('inf')) | |
epoch_losses.append(current_loss) | |
print(f"Losses at epoch {epoch + 1}: {losses}") | |
# Save the best model | |
if current_loss < best_loss: | |
best_loss = current_loss | |
temp_model_path = model_path + "_temp" | |
nlp.to_disk(temp_model_path) | |
# Safely move to the final path | |
if os.path.exists(model_path): | |
shutil.rmtree(model_path) | |
shutil.copytree(temp_model_path, model_path) | |
shutil.rmtree(temp_model_path) | |
# Save the final model | |
nlp.to_disk(model_path) | |
print(f"Training completed. Final model saved at: {model_path}") | |
return epoch_losses |