Spaces:
Sleeping
Sleeping
| import spacy | |
| from spacy.training import Example | |
| from spacy.util import minibatch, compounding | |
| from pathlib import Path | |
| from spacy.tokens import DocBin | |
| import random | |
| # Load the training data from the .spacy file | |
| def load_data_from_spacy_file(file_path): | |
| # Initialize a blank English model to ensure compatibility | |
| nlp = spacy.blank("en") | |
| # Load the DocBin object and get documents | |
| try: | |
| doc_bin = DocBin().from_disk(file_path) | |
| docs = list(doc_bin.get_docs(nlp.vocab)) | |
| return docs | |
| except Exception as e: | |
| print(f"Error loading data from .spacy file: {e}") | |
| return [] | |
| # Train model function | |
| def train_model(epochs, model_path): | |
| # Initialize a blank English model | |
| nlp = spacy.blank("en") | |
| # Create an NER component and add it to the pipeline | |
| if "ner" not in nlp.pipe_names: | |
| ner = nlp.add_pipe("ner") | |
| nlp.add_pipe("sentencizer") | |
| # Define all possible entity labels | |
| labels = [ | |
| "PERSON", "CONTACT", "EMAIL", "ABOUT", "EXPERIENCE", "YEARS_EXPERIENCE", | |
| "UNIVERSITY", "SOFT_SKILL", "INSTITUTE", "LAST_QUALIFICATION_YEAR", "JOB_TITLE", | |
| "COMPANY", "COURSE", "DOB", "HOBBIES", "LINK", "SCHOOL", "QUALIFICATION", | |
| "LANGUAGE", "LOCATION", "PROJECTS", "SKILL", "CERTIFICATE" | |
| ] | |
| # Add labels to the NER component | |
| for label in labels: | |
| ner.add_label(label) | |
| # Load the training data | |
| train_data = load_data_from_spacy_file("./data/Spacy_data.spacy") | |
| # Start the training | |
| optimizer = nlp.begin_training() | |
| epoch_losses = [] | |
| best_loss = float('inf') | |
| # Training loop | |
| for epoch in range(epochs): | |
| losses = {} | |
| random.shuffle(train_data) # Shuffle data for better training | |
| # Create minibatches | |
| batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001)) | |
| for batch in batches: | |
| texts, annotations = zip(*[(doc.text, {"entities": [(ent.start_char, ent.end_char, ent.label_) for ent in doc.ents]}) for doc in batch]) | |
| # Convert to Example objects | |
| examples = [Example.from_dict(nlp.make_doc(text), annotation) for text, annotation in zip(texts, annotations)] | |
| # Update the model | |
| nlp.update(examples, sgd=optimizer, drop=0.35, losses=losses) | |
| current_loss = losses.get("ner", float('inf')) | |
| epoch_losses.append(current_loss) | |
| print(f"Losses at epoch {epoch + 1}: {losses}") | |
| # Stop training if the loss is zero | |
| if current_loss == 0: | |
| break | |
| # Save the best model | |
| if current_loss < best_loss: | |
| best_loss = current_loss | |
| nlp.to_disk(model_path) | |
| # Save the final model | |
| nlp.to_disk(model_path) | |
| return epoch_losses | |