# mistral.py import os import json import logging from huggingface_hub import InferenceClient from huggingface_hub.utils._errors import BadRequestError from dotenv import load_dotenv from utils.fileTotext import extract_text_based_on_format import re from utils.spacy import Parser_from_model # Load environment variables from .env file load_dotenv() # Authenticate with Hugging Face HFT = os.getenv('HF_TOKEN') if not HFT: raise ValueError("Hugging Face token is not set in environment variables.") client = InferenceClient(model="mistralai/Mistral-Nemo-Instruct-2407", token=HFT) # Function to clean model output ''' def Data_Cleaner(text): pattern = r".*?format:" result = re.split(pattern, text, maxsplit=1) if len(result) > 1: # Handle edge cases where JSON might not be properly formatted after 'format:' text_after_format = result[1].strip().strip('`').strip('json') else: text_after_format = text.strip().strip('`').strip('json') # Try to ensure valid JSON is returned try: json.loads(text_after_format) # Check if it's valid JSON return text_after_format except json.JSONDecodeError: logging.error("Data cleaning led to invalid JSON") return text # Return the original text if cleaning goes wrong ''' def Data_Cleaner(text): """ Preprocess the JSON string to remove extra spaces, tabs, and newlines. """ # Use a regex pattern to extract JSON if it exists within ```json and ``` pattern = r"```json\s*(\{.*?\})\s*```" # Non-greedy matching inside braces match = re.search(pattern, text, re.DOTALL) # DOTALL to match newlines if match: json_str = match.group(1).strip() # Extract JSON block else: # If no match, check if text itself is a JSON object try: json_obj = json.loads(text.strip()) # Attempt to load the text as JSON # Remove leading and trailing whitespace text = text.strip() # Remove unnecessary newlines and tabs text = re.sub(r'\s*\n\s*', ' ', text) # Replace newlines with a space text = re.sub(r'\s+', ' ', text) # Replace multiple spaces with a single space text = re.sub(r'\s*([{}:,])\s*', r'\1', text) # Remove spaces around braces, colons, and commas return text # Return the parsed JSON as a dictionary except json.JSONDecodeError: logging.error("No valid JSON found in the text") return text # Return the original text if no valid JSON is found # Validate and return the cleaned JSON if it's valid try: json_obj = json.loads(json_str) # Validate JSON return json_str # Return the parsed JSON as a dictionary except json.JSONDecodeError: logging.error("Extracted text is not valid JSON") return text # Return the original text if JSON decoding fa # Function to call Mistral and process output def Model_ProfessionalDetails_Output(resume, client): system_role = { "role": "system", "content": "You are a skilled resume parser. Your task is to extract Professional details from resumes in a structured JSON format defined by the User. Ensure accuracy and completeness while maintaining the format provided and if field are missing just return []." } user_prompt = { "role": "user", "content": f'''[INST] Act as a resume parser for the following text given in text: {resume} Extract the text in the following output JSON string as: {{ "professional": {{ "technical_skills": ["List all technical skills, programming languages, frameworks, and technologies mentioned in the resume, ensuring they are not mixed with other skill types. If not found, return []"], "non_technical_skills": ["List all non-technical skills such as leadership, teamwork, and communication skills, ensuring they are not mixed with technical skills. If not found, return []"], "tools": ["List and extract all software tools, platforms, and applications referenced in the resume, distinctly separate from skills. If not found, return []"], "companies_worked_at": ["List and Extract all companies or industries where the person has worked, as mentioned in the resume. If not found, return []"], "projects": ["Extract all projects names or titles mentioned in the resume. If not found, return []"], "projects_experience": ["Summarize overall project experiences in a list, providing a brief description of each project as detailed in the resume. If not found, return []"], "experience": ["Calculate and give the total work experience in years, even if overlapping as mentioned in the resume. If not found, return []"], "roles": ["List and Extract all job titles or roles of the person, as mentioned in the resume. If not found, return []"] }} }} output: [/INST] ''' } #response = "" #for message in client.chat_completion(messages=[system_role, user_prompt], max_tokens=4096, stream=True):#, temperature=0.35): # response += message.choices[0].delta.content data = client.chat_completion(messages=[system_role, user_prompt], max_tokens=3000, stream=False, temperature=0.35) response = data.choices[0].message.content try: clean_response = Data_Cleaner(response) print("This is clean_response data----> ",clean_response) parsed_response = json.loads(clean_response) except json.JSONDecodeError as e: logging.error(f"JSON Decode Error: {e}") return {} return parsed_response # Function to call Mistral and process output def Model_EducationalDetails_Output(resume, client): system_role = { "role": "system", "content": "You are a skilled resume parser. Your task is to Extract All Educational qualifications, including Degrees and Certifications from resumes in a structured JSON format defined by the User. Ensure accuracy and completeness while maintaining the format provided and if field are missing just return []." } user_prompt = { "role": "user", "content": f'''[INST] Act as a resume parser for the following text given in text: {resume} Extract the text in the following output JSON string as: {{ "educational": {{ "certifications": ["List and extract all certifications mentioned in the resume. If none are found, return []."], "qualifications": ["List and extract all educational qualifications, including degrees (e.g., BBA, MBA), their full forms, and associated levels (e.g., undergraduate, postgraduate) from the resume. If [] are found, return []."], "university": ["List and extract the name of the university, college, or institute attended based on the resume. If not found, return []."], "courses": ["List and extract the names of completed courses or based on the resume. If none are found, return []."] }} }} output: [/INST] ''' } #response = "" #for message in client.chat_completion(messages=[system_role, user_prompt], max_tokens=4096, stream=True):#, temperature=0.35): # response += message.choices[0].delta.content data = client.chat_completion(messages=[system_role, user_prompt], max_tokens=3000, stream=False, temperature=0.35) response = data.choices[0].message.content try: clean_response = Data_Cleaner(response) print("This is clean_response data----> ",clean_response) parsed_response = json.loads(clean_response) except json.JSONDecodeError as e: logging.error(f"JSON Decode Error: {e}") return {} return parsed_response def Model_PersonalDetails_Output(resume, client): system_role = { "role": "system", "content": "You are a skilled resume parser. Your task is to extract personal details from resumes in a structured JSON format defined by the User. Ensure accuracy and completeness while maintaining the format provided and if field are missing just return []." } user_prompt = { "role": "user", "content": f'''[INST] Act as a resume parser for the following text given in text: {resume} Extract the text in the following output JSON string as: {{ "personal": {{ "name": ["Extract the full name based on the resume. If not found, return []."], "contact_number": ["Extract the contact number from the resume. If not found, return []."], "email": ["Extract the email address from the resume. If not found, return []."], "address": ["Extract the address or address as mentioned in the resume. If not found, return []."], "link": ["Extract any relevant links (e.g., portfolio, LinkedIn) from the resume. If not found, return [].]" }} }} output: [/INST] ''' } # Response #response = "" #for message in client.chat_completion(messages=[system_role, user_prompt], max_tokens=3000, stream=True):#, temperature=0.35): #response += message.choices[0].delta.content data = client.chat_completion(messages=[system_role, user_prompt], max_tokens=3000, stream=False, temperature=0.35) response = data.choices[0].message.content # Handle cases where the response might have formatting issues try: #print('The Og response:-->',response) clean_response=Data_Cleaner(response) print("This is clean_response data----> ",clean_response) parsed_response = json.loads(clean_response) except json.JSONDecodeError as e: print("JSON Decode Error:", e) print("Raw Response:", response) return {} return parsed_response # # Fallback to SpaCy if Mistral fails # Add regex pattern for LinkedIn and GitHub links linkedin_pattern = r"https?://(?:www\.)?linkedin\.com/[\w\-_/]+" github_pattern = r"https?://(?:www\.)?github\.com/[\w\-_/]+" email_pattern = r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$" contact_pattern = r"^\+?[\d\s\-()]{7,15}$" def extract_links(hyperlinks): linkedin_links = [] github_links = [] # Iterate through the hyperlinks and apply regex to find LinkedIn and GitHub links for link in hyperlinks: if re.match(linkedin_pattern, link): linkedin_links.append(link) elif re.match(github_pattern, link): github_links.append(link) return linkedin_links, github_links def is_valid_email(email): email_regex = r'^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$' return re.match(email_regex, email) is not None def is_valid_contact(contact): patterns = [ r'^\+91[\s\.\-\/]?\(?0?\)?[\s\-\.\/]?\d{5}[\s\-\.\/]?\d{5}$', # +91 with optional 0 and separators r'^\+91[\s\.\-\/]?\d{5}[\s\-\.\/]?\d{5}$', # +91 with 10 digits separated r'^\d{5}[\s\-\.\/]?\d{5}$', # Local format without country code r'^\+91[\s\.\-\/]?\d{10}$', # +91 with 10 digits together r'^\d{10}$', # 10 digits together r'^\+91[\s\.\-\/]?\(?\d{5}\)?[\s\-\.\/]?\d{5}[\s\-\.\/]?\d{5}$' # +91 with varying separators r'\+1\s\(\d{3}\)\s\d{3}-\d{4} ', # USA/Canada Intl +1 (XXX) XXX-XXXX r'\(\d{3}\)\s\d{3}-\d{4} ', # USA/Canada STD (XXX) XXX-XXXX r'\(\d{3}\)\s\d{3}\s\d{4} ', # USA/Canada (XXX) XXX XXXX r'\(\d{3}\)\s\d{3}\s\d{3} ', # USA/Canada (XXX) XXX XXX r'\+1\d{10} ', # +1 XXXXXXXXXX r'\d{10} ', # XXXXXXXXXX r'\+44\s\d{4}\s\d{6} ', # UK Intl +44 XXXX XXXXXX r'\+44\s\d{3}\s\d{3}\s\d{4} ', # UK Intl +44 XXX XXX XXXX r'0\d{4}\s\d{6} ', # UK STD 0XXXX XXXXXX r'0\d{3}\s\d{3}\s\d{4} ', # UK STD 0XXX XXX XXXX r'\+44\d{10} ', # +44 XXXXXXXXXX r'0\d{10} ', # 0XXXXXXXXXX r'\+61\s\d\s\d{4}\s\d{4} ', # Australia Intl +61 X XXXX XXXX r'0\d\s\d{4}\s\d{4} ', # Australia STD 0X XXXX XXXX r'\+61\d{9} ', # +61 XXXXXXXXX r'0\d{9} ', # 0XXXXXXXXX r'\+91\s\d{5}-\d{5} ', # India Intl +91 XXXXX-XXXXX r'\+91\s\d{4}-\d{6} ', # India Intl +91 XXXX-XXXXXX r'\+91\s\d{10} ', # India Intl +91 XXXXXXXXXX r'0\d{2}-\d{7} ', # India STD 0XX-XXXXXXX r'\+91\d{10} ', # +91 XXXXXXXXXX r'\+49\s\d{4}\s\d{8} ', # Germany Intl +49 XXXX XXXXXXXX r'\+49\s\d{3}\s\d{7} ', # Germany Intl +49 XXX XXXXXXX r'0\d{3}\s\d{8} ', # Germany STD 0XXX XXXXXXXX r'\+49\d{12} ', # +49 XXXXXXXXXXXX r'\+49\d{10} ', # +49 XXXXXXXXXX r'0\d{11} ', # 0XXXXXXXXXXX r'\+86\s\d{3}\s\d{4}\s\d{4} ', # China Intl +86 XXX XXXX XXXX r'0\d{3}\s\d{4}\s\d{4} ', # China STD 0XXX XXXX XXXX r'\+86\d{11} ', # +86 XXXXXXXXXXX r'\+81\s\d\s\d{4}\s\d{4} ', # Japan Intl +81 X XXXX XXXX r'\+81\s\d{2}\s\d{4}\s\d{4} ', # Japan Intl +81 XX XXXX XXXX r'0\d\s\d{4}\s\d{4} ', # Japan STD 0X XXXX XXXX r'\+81\d{10} ', # +81 XXXXXXXXXX r'\+81\d{9} ', # +81 XXXXXXXXX r'0\d{9} ', # 0XXXXXXXXX r'\+55\s\d{2}\s\d{5}-\d{4} ', # Brazil Intl +55 XX XXXXX-XXXX r'\+55\s\d{2}\s\d{4}-\d{4} ', # Brazil Intl +55 XX XXXX-XXXX r'0\d{2}\s\d{4}\s\d{4} ', # Brazil STD 0XX XXXX XXXX r'\+55\d{11} ', # +55 XXXXXXXXXXX r'\+55\d{10} ', # +55 XXXXXXXXXX r'0\d{10} ', # 0XXXXXXXXXX r'\+33\s\d\s\d{2}\s\d{2}\s\d{2}\s\d{2} ', # France Intl +33 X XX XX XX XX r'0\d\s\d{2}\s\d{2}\s\d{2}\s\d{2} ', # France STD 0X XX XX XX XX r'\+33\d{9} ', # +33 XXXXXXXXX r'0\d{9} ', # 0XXXXXXXXX r'\+7\s\d{3}\s\d{3}-\d{2}-\d{2} ', # Russia Intl +7 XXX XXX-XX-XX r'8\s\d{3}\s\d{3}-\d{2}-\d{2} ', # Russia STD 8 XXX XXX-XX-XX r'\+7\d{10} ', # +7 XXXXXXXXXX r'8\d{10} ', # 8 XXXXXXXXXX r'\+27\s\d{2}\s\d{3}\s\d{4} ', # South Africa Intl +27 XX XXX XXXX r'0\d{2}\s\d{3}\s\d{4} ', # South Africa STD 0XX XXX XXXX r'\+27\d{9} ', # +27 XXXXXXXXX r'0\d{9} ', # 0XXXXXXXXX r'\+52\s\d{3}\s\d{3}\s\d{4} ', # Mexico Intl +52 XXX XXX XXXX r'\+52\s\d{2}\s\d{4}\s\d{4} ', # Mexico Intl +52 XX XXXX XXXX r'01\s\d{3}\s\d{4} ', # Mexico STD 01 XXX XXXX r'\+52\d{10} ', # +52 XXXXXXXXXX r'01\d{7} ', # 01 XXXXXXX r'\+234\s\d{3}\s\d{3}\s\d{4} ', # Nigeria Intl +234 XXX XXX XXXX r'0\d{3}\s\d{3}\s\d{4} ', # Nigeria STD 0XXX XXX XXXX r'\+234\d{10} ', # +234 XXXXXXXXXX r'0\d{10} ', # 0XXXXXXXXXX r'\+971\s\d\s\d{3}\s\d{4} ', # UAE Intl +971 X XXX XXXX r'0\d\s\d{3}\s\d{4} ', # UAE STD 0X XXX XXXX r'\+971\d{8} ', # +971 XXXXXXXX r'0\d{8} ', # 0XXXXXXXX r'\+54\s9\s\d{3}\s\d{3}\s\d{4} ', # Argentina Intl +54 9 XXX XXX XXXX r'\+54\s\d{1}\s\d{4}\s\d{4} ', # Argentina Intl +54 X XXXX XXXX r'0\d{3}\s\d{4} ', # Argentina STD 0XXX XXXX r'\+54\d{10} ', # +54 9 XXXXXXXXXX r'\+54\d{9} ', # +54 XXXXXXXXX r'0\d{7} ', # 0XXXXXXX r'\+966\s\d\s\d{3}\s\d{4} ', # Saudi Intl +966 X XXX XXXX r'0\d\s\d{3}\s\d{4} ', # Saudi STD 0X XXX XXXX r'\+966\d{8} ', # +966 XXXXXXXX r'0\d{8} ', # 0XXXXXXXX r'\+1\d{10} ', # +1 XXXXXXXXXX r'\+1\s\d{3}\s\d{3}\s\d{4} ', # +1 XXX XXX XXXX r'\d{5}\s\d{5} ', # XXXXX XXXXX r'\d{10} ', # XXXXXXXXXX r'\+44\d{10} ', # +44 XXXXXXXXXX r'0\d{10} ', # 0XXXXXXXXXX r'\+61\d{9} ', # +61 XXXXXXXXX r'0\d{9} ', # 0XXXXXXXXX r'\+91\d{10} ', # +91 XXXXXXXXXX r'\+49\d{12} ', # +49 XXXXXXXXXXXX r'\+49\d{10} ', # +49 XXXXXXXXXX r'0\d{11} ', # 0XXXXXXXXXXX r'\+86\d{11} ', # +86 XXXXXXXXXXX r'\+81\d{10} ', # +81 XXXXXXXXXX r'\+81\d{9} ', # +81 XXXXXXXXX r'0\d{9} ', # 0XXXXXXXXX r'\+55\d{11} ', # +55 XXXXXXXXXXX r'\+55\d{10} ', # +55 XXXXXXXXXX r'0\d{10} ', # 0XXXXXXXXXX r'\+33\d{9} ', # +33 XXXXXXXXX r'0\d{9} ', # 0XXXXXXXXX r'\+7\d{10} ', # +7 XXXXXXXXXX r'8\d{10} ', # 8 XXXXXXXXXX r'\+27\d{9} ', # +27 XXXXXXXXX r'0\d{9} ', # 0XXXXXXXXX (South Africa STD) r'\+52\d{10} ', # +52 XXXXXXXXXX r'01\d{7} ', # 01 XXXXXXX r'\+234\d{10} ', # +234 XXXXXXXXXX r'0\d{10} ', # 0XXXXXXXXXX r'\+971\d{8} ', # +971 XXXXXXXX r'0\d{8} ', # 0XXXXXXXX r'\+54\s9\s\d{10} ', # +54 9 XXXXXXXXXX r'\+54\d{9} ', # +54 XXXXXXXXX r'0\d{7} ', # 0XXXXXXX r'\+966\d{8} ', # +966 XXXXXXXX r'0\d{8}' # 0XXXXXXXX ] # Check if the contact matches any of the patterns return any(re.match(pattern, contact) for pattern in patterns) is not None def validate_contact_email(personal_data): contact = personal_data.get('contact', []) email = personal_data.get('email', []) valid_contact = is_valid_contact(contact) if contact != [] else False valid_email = is_valid_email(email) if email != [] else False invalid_contact = 'Invalid contact' if not valid_contact else 'Valid contact' invalid_email = 'Invalid email' if not valid_email else 'Valid email' return valid_contact, invalid_contact, valid_email, invalid_email #Extracting the Data Using the Regex if the model don't extract Contact details def extract_link_details(text): # Regex patterns # Email regex email_regex = re.compile(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}\b') # URL and links regex, updated to avoid conflicts with email domains link_regex = re.compile(r'\b(?:https?:\/\/)?(?:www\.)[a-zA-Z0-9-]+\.(?:com|co\.in|co|io|org|net|edu|gov|mil|int|uk|us|in|de|au|app|tech|xyz|info|biz|fr|dev)\b') emails = email_regex.findall(text) links_RE = [link for link in link_regex.findall(text) if len(link)>=11] # Remove profile links that might conflict with emails links_RE = [link for link in links_RE if not any(email in link for email in emails)] return links_RE # For handling multiple data def normalize_data(value): """Replace empty lists with None and convert strings to lists.""" if value == []: return None elif isinstance(value, str): # check for str return [value] elif isinstance(value, (float, int)): # Check for both float and int return [str(value)] return value def process_resume_data(file_path): resume_text, hyperlinks = extract_text_based_on_format(file_path) print("Resume converted to text successfully.") if not resume_text: return {"error": "Text extraction failed"} # Extract LinkedIn and GitHub links linkedin_links, github_links = extract_links(hyperlinks) # Attempt to use Mistral model for parsing try: # Extract personal details using Mistral per_data = Model_PersonalDetails_Output(resume_text, client) print(f"Personal Data -----> {per_data}") # Extract professional details using Mistral pro_data = Model_ProfessionalDetails_Output(resume_text, client) print(f"Professional Data -----> {pro_data}") Edu_data=Model_EducationalDetails_Output(resume_text, client) print(f"Educational Data -----> {Edu_data}") # Extract link using Regular Expression links = extract_link_details(resume_text) print(f"Links Data -----> {links}") # Check if per_data and pro_data have been populated correctly if not per_data: logging.warning("Mistral personal data extraction failed.") per_data = {} if not pro_data: logging.warning("Mistral professional data extraction failed.") pro_data = {} # Combine both personal and professional details into a structured output result = { "personal": { "name": normalize_data(per_data.get('personal', {}).get('name', None)), "contact": normalize_data(per_data.get('personal', {}).get('contact_number', None)), "email": normalize_data(per_data.get('personal', {}).get('email', None)), "location": normalize_data(per_data.get('personal', {}).get('address', None)), "linkedin": normalize_data(linkedin_links), "github": normalize_data(github_links), "other_links": normalize_data(hyperlinks) }, "professional": { "technical_skills": normalize_data(pro_data.get('professional', {}).get('technical_skills', None)), "non_technical_skills": normalize_data(pro_data.get('professional', {}).get('non_technical_skills', None)), "tools": normalize_data(pro_data.get('professional', {}).get('tools', None)), "experience": [ { "company": normalize_data(pro_data.get('professional', {}).get('companies_worked_at', None)), "projects": normalize_data(pro_data.get('professional', {}).get('projects', None)), "role": normalize_data(pro_data.get('professional', {}).get('roles', None)), "years": normalize_data(pro_data.get('professional', {}).get('experience', None)), "project_experience": normalize_data(pro_data.get('professional', {}).get('projects_experience', None)) } ], "education": [ { "qualification": normalize_data(Edu_data.get('educational', {}).get('qualifications', None)), "university": normalize_data(Edu_data.get('educational', {}).get('university', None)), "course": normalize_data(Edu_data.get('educational', {}).get('courses', None)), "certificate": normalize_data(Edu_data.get('educational', {}).get('certifications', None)) } ] } } #Appending the list if any available as a text if result['personal']['other_links'] is not None: result['personal']['other_links'] += links #Added the validator for details, Validate contact and email #valid_contact, invalid_contact, valid_email, invalid_email = validate_contact_email(result['personal']) #result['personal']['valid_contact'] = None #result['personal']['invalid_contact'] = None #result['personal']['valid_email'] = None #result['personal']['invalid_email'] = None #Appending the Educational Details if any available as a text # If Mistral produces valid output, return it if per_data or pro_data: logging.info("Successfully extracted data using Mistral.") print(result) print("---------Mistral-------") return result else: raise ValueError("Mistral returned no output") # Handle HuggingFace API or Mistral model errors except BadRequestError as e: logging.error(f"HuggingFace API error: {e}. Falling back to SpaCy.") print(f"HuggingFace API error: {e}. Falling back to SpaCy.") except Exception as e: logging.error(f"An error occurred while processing with Mistral: {e}. Falling back to SpaCy.") print(f"An error occurred while processing with Mistral: {e}. Falling back to SpaCy.") # Fallback to SpaCy if Mistral fails logging.warning("Mistral failed, switching to SpaCy.") print("---------SpaCy-------") return Parser_from_model(file_path)