from flask import Flask, render_template, request, redirect, url_for, session import os from werkzeug.utils import secure_filename #from retrival import generate_data_store from retrival import generate_data_store #,add_document_to_existing_db, delete_chunks_by_source from langchain_community.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings from langchain.prompts import ChatPromptTemplate from langchain_core.prompts import PromptTemplate, ChatPromptTemplate from langchain_huggingface import HuggingFaceEndpoint from huggingface_hub import InferenceClient from langchain.schema import Document from langchain_core.documents import Document from dotenv import load_dotenv import re import glob import shutil from werkzeug.utils import secure_filename import asyncio import nltk nltk.download('punkt_tab') import nltk nltk.download('averaged_perceptron_tagger_eng') app = Flask(__name__) # Set the secret key for session management app.secret_key = os.urandom(24) # Configurations UPLOAD_FOLDER = "uploads/" VECTOR_DB_FOLDER = "VectorDB/" #TABLE_DB_FOLDER = "TableDB/" app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER os.makedirs(UPLOAD_FOLDER, exist_ok=True) os.makedirs(VECTOR_DB_FOLDER, exist_ok=True) #os.makedirs(TABLE_DB_FOLDER, exist_ok=True) # Global variables CHROMA_PATH = None TEMP_PATH = None #TABLE_PATH = None #System prompt '''PROMPT_TEMPLATE = """ You are working with a retrieval-augmented generation (RAG) setup. Your task is to generate a response based on the context provided and the question asked. Consider only the following context strictly, and use it to answer the question. If the question cannot be answered using the context, respond with: "The information requested is not mentioned in the context." Context: {context} --- Question: {question} Response: """ ''' PROMPT_TEMPLATE = """ You are working as a retrieval-augmented generation (RAG) assistant specializing in providing precise and accurate responses. Generate a response based only on the provided context and question, following these concrete instructions: - **Adhere strictly to the context:** Use only the information in the context to answer the question. Do not add any external details or assumptions. - **Handle multiple chunks:** The context is divided into chunks, separated by "###". Query-related information may be present in any chunk. - **Focus on relevance:** Identify and prioritize chunks relevant to the question while ignoring unrelated chunks. - **Answer concisely and factually:** Provide clear, direct, and structured responses based on the retrieved information. Context: {context} --- Question: {question} Response: """ #HFT = os.getenv('HF_TOKEN') #client = InferenceClient(api_key=HFT) @app.route('/', methods=['GET']) def home(): return render_template('home.html') @app.route('/chat', methods=['GET', 'POST']) def chat(): if 'history' not in session: session['history'] = [] print("sessionhist1",session['history']) global CHROMA_PATH #global TABLE_PATH #old_db = session.get('old_db', None) #print(f"Selected DB: {CHROMA_PATH}") #if TEMP_PATH is not None and TEMP_PATH != CHROMA_PATH: # session['history'] = [] #TEMP_PATH = CHROMA_PATH if request.method == 'POST': query_text = request.form['query_text'] if CHROMA_PATH is None: return render_template('chat.html', error="No vector database selected!", history=[]) # Load the selected Document Database embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") #embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function) results_document = db.similarity_search_with_relevance_scores(query_text, k=3) print("results------------------->",results_document) context_text_document = "\n\n---\n\n".join([doc.page_content for doc, _score in results_document]) # # Load the selected Table Database # #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") # embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") # tdb = Chroma(persist_directory=TABLE_PATH, embedding_function=embedding_function) # results_table = tdb.similarity_search_with_relevance_scores(query_text, k=2) # print("results------------------->",results_table) # context_text_table = "\n\n---\n\n".join([doc.page_content for doc, _score in results_table]) # Prepare the prompt and query the model prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE) prompt = prompt_template.format(context=context_text_document,question=query_text) #prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text) print("results------------------->",prompt) #Model Defining and its use repo_id = "mistralai/Mistral-7B-Instruct-v0.3" HFT = os.environ["HF_TOKEN"] llm = HuggingFaceEndpoint( repo_id=repo_id, max_tokens=3000, temperature=0.8, huggingfacehub_api_token=HFT, ) data= llm(prompt) #data = response.choices[0].message.content print("LLM response------------------>",data) # filtering the uneccessary context. if re.search(r'\bmention\b|\bnot mention\b|\bnot mentioned\b|\bnot contain\b|\bnot include\b|\bnot provide\b|\bdoes not\b|\bnot explicitly\b|\bnot explicitly mentioned\b', data, re.IGNORECASE): data = "We do not have information related to your query on our end." # Save the query and answer to the session history session['history'].append((query_text, data)) # Mark the session as modified to ensure it gets saved session.modified = True print("sessionhist2",session['history']) return render_template('chat.html', query_text=query_text, answer=data, history=session['history']) return render_template('chat.html', history=session['history']) ''' @app.route('/create-db', methods=['GET', 'POST']) def create_db(): if request.method == 'POST': db_name = request.form['db_name'] # Get all files from the uploaded folder files = request.files.getlist('folder') if not files: return "No files uploaded", 400 # if not exist os.makedirs(UPLOAD_FOLDER, exist_ok=True) # Define the base upload path upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name)) #upload_base_path = upload_base_path.replace("\\", "/") print(f"Base Upload Path: {upload_base_path}") os.makedirs(upload_base_path, exist_ok=True) # Save each file and recreate folder structure for file in files: print("file , files",files,file) #relative_path = file.filename # This should contain the subfolder structure file_path = os.path.join(upload_base_path) #file_path = file_path.replace("\\", "/") # Ensure the directory exists before saving the file print(f"Saving to: {file_path}") os.makedirs(os.path.dirname(file_path), exist_ok=True) # Get the file path and save it file_path = os.path.join(upload_base_path, secure_filename(file.filename)) file.save(file_path) # Generate datastore generate_data_store(upload_base_path, db_name) # # Clean up uploaded files (if needed) #if os.path.exists(app.config['UPLOAD_FOLDER']): # shutil.rmtree(app.config['UPLOAD_FOLDER']) return redirect(url_for('list_dbs')) return render_template('create_db.html') ''' @app.route('/create-db', methods=['GET', 'POST']) def create_db(): if request.method == 'POST': db_name = request.form['db_name'] # Ensure the upload folder exists os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True) # Define the base upload path upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name)) os.makedirs(upload_base_path, exist_ok=True) # Check for uploaded folder or files folder_files = request.files.getlist('folder') single_files = request.files.getlist('file') if folder_files and any(file.filename for file in folder_files): # Process folder files for file in folder_files: file_path = os.path.join(upload_base_path, secure_filename(file.filename)) os.makedirs(os.path.dirname(file_path), exist_ok=True) file.save(file_path) elif single_files and any(file.filename for file in single_files): # Process single files for file in single_files: file_path = os.path.join(upload_base_path, secure_filename(file.filename)) file.save(file_path) else: return "No files uploaded", 400 # Generate datastore generate_data_store(upload_base_path, db_name) return redirect(url_for('list_dbs')) return render_template('create_db.html') @app.route('/list-dbs', methods=['GET']) def list_dbs(): vector_dbs = [name for name in os.listdir(VECTOR_DB_FOLDER) if os.path.isdir(os.path.join(VECTOR_DB_FOLDER, name))] return render_template('list_dbs.html', vector_dbs=vector_dbs) @app.route('/select-db/', methods=['POST']) def select_db(db_name): #Selecting the Documnet Vector DB global CHROMA_PATH print(f"Selected DB: {CHROMA_PATH}") CHROMA_PATH = os.path.join(VECTOR_DB_FOLDER, db_name) CHROMA_PATH = CHROMA_PATH.replace("\\", "/") print(f"Selected DB: {CHROMA_PATH}") #Selecting the Table Vector DB # global TABLE_PATH # print(f"Selected DB: {TABLE_PATH}") # TABLE_PATH = os.path.join(TABLE_DB_FOLDER, db_name) # TABLE_PATH = TABLE_PATH.replace("\\", "/") # print(f"Selected DB: {TABLE_PATH}") return redirect(url_for('chat')) @app.route('/update-dbs/', methods=['GET','POST']) def update_db(db_name): if request.method == 'POST': db_name = request.form['db_name'] # Get all files from the uploaded folder files = request.files.getlist('folder') if not files: return "No files uploaded", 400 print(f"Selected DB: {db_name}") DB_PATH = os.path.join(VECTOR_DB_FOLDER, db_name) DB_PATH = DB_PATH.replace("\\", "/") print(f"Selected DB: {DB_PATH}") generate_data_store(DB_PATH, db_name) return redirect(url_for('list_dbs')) return render_template('update_db.html') if __name__ == "__main__": app.run(debug=False, use_reloader=False) RETRIVAL PY from langchain_community.document_loaders import DirectoryLoader from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.schema import Document from langchain_core.documents import Document from langchain_community.vectorstores import Chroma import os import shutil import asyncio from unstructured.partition.pdf import partition_pdf from unstructured.partition.auto import partition import pytesseract import os import re import uuid from collections import defaultdict pytesseract.pytesseract.tesseract_cmd = (r'/usr/bin/tesseract') # Configurations UPLOAD_FOLDER = "./uploads" VECTOR_DB_FOLDER = "./VectorDB" IMAGE_DB_FOLDER = "./Images" os.makedirs(UPLOAD_FOLDER, exist_ok=True) os.makedirs(VECTOR_DB_FOLDER, exist_ok=True) ######################################################################################################################################################## ####-------------------------------------------------------------- Documnet Loader ---------------------------------------------------------------#### ######################################################################################################################################################## # Loaders for loading Document text, tables and images from any file format. #data_path=r"H:\DEV PATEL\2025\RAG Project\test_data\google data" def load_document(data_path): processed_documents = [] element_content = [] table_document = [] #having different process for the pdf for root, _, files in os.walk(data_path): for file in files: file_path = os.path.join(root, file) doc_id = str(uuid.uuid4()) # Generate a unique ID for the document print(f"Processing document ID: {doc_id}, Path: {file_path}") try: # Determine the file type based on extension filename, file_extension = os.path.splitext(file.lower()) image_output = f"./Images/{filename}/" # Use specific partition techniques based on file extension if file_extension == ".pdf": elements = partition_pdf( filename=file_path, strategy="hi_res", # Use layout detection infer_table_structure=True, hi_res_model_name="yolox", extract_images_in_pdf=True, extract_image_block_types=["Image","Table"], extract_image_block_output_dir=image_output, show_progress=True, #chunking_strategy="by_title", ) else: # Default to auto partition if no specific handler is found elements = partition( filename=file_path, strategy="hi_res", infer_table_structure=True, show_progress=True, #chunking_strategy="by_title" ) except Exception as e: print(f"Failed to process document {file_path}: {e}") continue categorized_content = { "tables": {"content": [], "Metadata": []}, "images": {"content": [], "Metadata": []}, "text": {"content": [], "Metadata": []}, "text2": {"content": [], "Metadata": []} } element_content.append(elements) CNT=1 for chunk in elements: # Safely extract metadata and text chunk_type = str(type(chunk)) chunk_metadata = chunk.metadata.to_dict() if chunk.metadata else {} chunk_text = getattr(chunk, "text", None) # Separate content into categories #if "Table" in chunk_type: if any( keyword in chunk_type for keyword in [ "Table", "TableChunk"]): categorized_content["tables"]["content"].append(chunk_text) categorized_content["tables"]["Metadata"].append(chunk_metadata) #test1 TABLE_DATA=f"Table number {CNT} "+chunk_metadata.get("text_as_html", "")+" " CNT+=1 categorized_content["text"]["content"].append(TABLE_DATA) categorized_content["text"]["Metadata"].append(chunk_metadata) elif "Image" in chunk_type: categorized_content["images"]["content"].append(chunk_text) categorized_content["images"]["Metadata"].append(chunk_metadata) elif any( keyword in chunk_type for keyword in [ "CompositeElement", "Text", "NarrativeText", "Title", "Header", "Footer", "FigureCaption", "ListItem", "UncategorizedText", "Formula", "CodeSnippet", "Address", "EmailAddress", "PageBreak", ] ): categorized_content["text"]["content"].append(chunk_text) categorized_content["text"]["Metadata"].append(chunk_metadata) else: continue # Append processed document processed_documents.append({ "doc_id": doc_id, "source": file_path, **categorized_content, }) # Loop over tables and match text from the same document and page ''' for doc in processed_documents: cnt=1 # count for storing number of the table for table_metadata in doc.get("tables", {}).get("Metadata", []): page_number = table_metadata.get("page_number") source = doc.get("source") page_content = "" for text_metadata, text_content in zip( doc.get("text", {}).get("Metadata", []), doc.get("text", {}).get("content", []) ): page_number2 = text_metadata.get("page_number") source2 = doc.get("source") if source == source2 and page_number == page_number2: print(f"Matching text found for source: {source}, page: {page_number}") page_content += f"{text_content} " # Concatenate text with a space # Add the matched content to the table metadata table_metadata["page_content"] =f"Table number {cnt} "+table_metadata.get("text_as_html", "")+" "+page_content.strip() # Remove trailing spaces and have the content proper here table_metadata["text_as_html"] = table_metadata.get("text_as_html", "") # we are also storing it seperatly table_metadata["Table_number"] = cnt # addiing the table number it will be use in retrival cnt+=1 # Custom loader of document which will store the table along with the text on that page specifically # making document of each table with its content unique_id = str(uuid.uuid4()) table_document.append( Document( id =unique_id, # Add doc_id directly page_content=table_metadata.get("page_content", ""), # Get page_content from metadata, default to empty string if missing metadata={ "source": doc["source"], "text_as_html": table_metadata.get("text_as_html", ""), "filetype": table_metadata.get("filetype", ""), "page_number": str(table_metadata.get("page_number", 0)), # Default to 0 if missing "image_path": table_metadata.get("image_path", ""), "file_directory": table_metadata.get("file_directory", ""), "filename": table_metadata.get("filename", ""), "Table_number": str(table_metadata.get("Table_number", 0)) # Default to 0 if missing } ) ) ''' # Initialize a structure to group content by doc_id grouped_by_doc_id = defaultdict(lambda: { "text_content": [], "metadata": None, # Metadata will only be set once per doc_id }) for doc in processed_documents: doc_id = doc.get("doc_id") source = doc.get("source") text_content = doc.get("text", {}).get("content", []) metadata_list = doc.get("text", {}).get("Metadata", []) # Merge text content grouped_by_doc_id[doc_id]["text_content"].extend(text_content) # Set metadata (if not already set) if grouped_by_doc_id[doc_id]["metadata"] is None and metadata_list: metadata = metadata_list[0] # Assuming metadata is consistent grouped_by_doc_id[doc_id]["metadata"] = { "source": source, "filetype": metadata.get("filetype"), "file_directory": metadata.get("file_directory"), "filename": metadata.get("filename"), "languages": str(metadata.get("languages")), } # Convert grouped content into Document objects grouped_documents = [] for doc_id, data in grouped_by_doc_id.items(): grouped_documents.append( Document( id=doc_id, page_content=" ".join(data["text_content"]).strip(), metadata=data["metadata"], ) ) # Output the grouped documents for document in grouped_documents: print(document) #Dirctory loader for loading the text data only to specific db ''' loader = DirectoryLoader(data_path, glob="*.*") documents = loader.load() # update the metadata adding filname to the met for doc in documents: unique_id = str(uuid.uuid4()) doc.id = unique_id path=doc.metadata.get("source") match = re.search(r'([^\\]+\.[^\\]+)$', path) doc.metadata.update({"filename":match.group(1)}) return documents, ''' return grouped_documents #documents,processed_documents,table_document = load_document(data_path) ######################################################################################################################################################## ####-------------------------------------------------------------- Chunking the Text --------------------------------------------------------------#### ######################################################################################################################################################## def split_text(documents: list[Document]): text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=500, length_function=len, add_start_index=True, ) chunks = text_splitter.split_documents(documents) # splitting the document into chunks for index in chunks: index.metadata["start_index"]=str(index.metadata["start_index"]) # the converstion of int metadata to str was done to store it in sqlite3 print(f"Split {len(documents)} documents into {len(chunks)} chunks.") return chunks ######################################################################################################################################################## ####---------------------------------------------------- Creating and Storeing Data in Vector DB --------------------------------------------------#### ######################################################################################################################################################## #def save_to_chroma(chunks: list[Document], name: str, tables: list[Document]): def save_to_chroma(chunks: list[Document], name: str): CHROMA_PATH = f"./VectorDB/chroma_{name}" #TABLE_PATH = f"./TableDB/chroma_{name}" if os.path.exists(CHROMA_PATH): shutil.rmtree(CHROMA_PATH) # if os.path.exists(TABLE_PATH): # shutil.rmtree(TABLE_PATH) try: # Load the embedding model embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") #embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") # Create Chroma DB for documents using from_documents [NOTE: Some of the data is converted to string because int and float show null if added] print("Creating document vector database...") db = Chroma.from_documents( documents=chunks, embedding=embedding_function, persist_directory=CHROMA_PATH, ) print("Document database successfully saved.") # # Create Chroma DB for tables if available [NOTE: Some of the data is converted to string because int and float show null if added] # if tables: # print("Creating table vector database...") # tdb = Chroma.from_documents( # documents=tables, # embedding=embedding_function, # persist_directory=TABLE_PATH, # ) # print("Table database successfully saved.") # else: # tdb = None #return db, tdb return db except Exception as e: print("Error while saving to Chroma:", e) return None # def get_unique_sources(chroma_path): # db = Chroma(persist_directory=chroma_path) # metadata_list = db.get()["metadatas"] # unique_sources = {metadata["source"] for metadata in metadata_list if "source" in metadata} # return list(unique_sources) ######################################################################################################################################################## ####----------------------------------------------------------- Updating Existing Data in Vector DB -----------------------------------------------#### ######################################################################################################################################################## # def add_document_to_existing_db(new_documents: list[Document], db_name: str): # CHROMA_PATH = f"./VectorDB/chroma_{db_name}" # if not os.path.exists(CHROMA_PATH): # print(f"Database '{db_name}' does not exist. Please create it first.") # return # try: # embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") # #embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") # db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function) # print("Adding new documents to the existing database...") # chunks = split_text(new_documents) # db.add_documents(chunks) # db.persist() # print("New documents added and database updated successfully.") # except Exception as e: # print("Error while adding documents to existing database:", e) # def delete_chunks_by_source(chroma_path, source_to_delete): # if not os.path.exists(chroma_path): # print(f"Database at path '{chroma_path}' does not exist.") # return # try: # #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") # embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") # db = Chroma(persist_directory=chroma_path, embedding_function=embedding_function) # print(f"Retrieving all metadata to identify chunks with source '{source_to_delete}'...") # metadata_list = db.get()["metadatas"] # # Identify indices of chunks to delete # indices_to_delete = [ # idx for idx, metadata in enumerate(metadata_list) if metadata.get("source") == source_to_delete # ] # if not indices_to_delete: # print(f"No chunks found with source '{source_to_delete}'.") # return # print(f"Deleting {len(indices_to_delete)} chunks with source '{source_to_delete}'...") # db.delete(indices=indices_to_delete) # db.persist() # print("Chunks deleted and database updated successfully.") # except Exception as e: # print(f"Error while deleting chunks by source: {e}") # # update a data store # def update_data_store(file_path, db_name): # CHROMA_PATH = f"./VectorDB/chroma_{db_name}" # print(f"Filepath ===> {file_path} DB Name ====> {db_name}") # try: # documents,table_document = load_document(file_path) # print("Documents loaded successfully.") # except Exception as e: # print(f"Error loading documents: {e}") # return # try: # chunks = split_text(documents) # print(f"Text split into {len(chunks)} chunks.") # except Exception as e: # print(f"Error splitting text: {e}") # return # try: # asyncio.run(save_to_chroma(save_to_chroma(chunks, db_name, table_document))) # print(f"Data saved to Chroma for database {db_name}.") # except Exception as e: # print(f"Error saving to Chroma: {e}") # return ######################################################################################################################################################## ####------------------------------------------------------- Combine Process of Load, Chunk and Store ----------------------------------------------#### ######################################################################################################################################################## def generate_data_store(file_path, db_name): CHROMA_PATH = f"./VectorDB/chroma_{db_name}" print(f"Filepath ===> {file_path} DB Name ====> {db_name}") try: #documents,grouped_documents = load_document(file_path) grouped_documents = load_document(file_path) print("Documents loaded successfully.") except Exception as e: print(f"Error loading documents: {e}") return try: chunks = split_text(grouped_documents) print(f"Text split into {len(chunks)} chunks.") except Exception as e: print(f"Error splitting text: {e}") return try: #asyncio.run(save_to_chroma(save_to_chroma(chunks, db_name, table_document))) asyncio.run(save_to_chroma(chunks, db_name)) print(f"Data saved to Chroma for database {db_name}.") except Exception as e: print(f"Error saving to Chroma: {e}") return