from flask import Flask, render_template, request, redirect, url_for, session import os from werkzeug.utils import secure_filename #from retrival import generate_data_store from retrival import generate_data_store #,add_document_to_existing_db, delete_chunks_by_source from langchain_community.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings from langchain.prompts import ChatPromptTemplate from langchain_core.prompts import PromptTemplate, ChatPromptTemplate from langchain_huggingface import HuggingFaceEndpoint from huggingface_hub import InferenceClient from langchain.schema import Document from langchain_core.documents import Document from dotenv import load_dotenv import re import glob import shutil from werkzeug.utils import secure_filename import asyncio import nltk nltk.download('punkt_tab') import nltk nltk.download('averaged_perceptron_tagger_eng') app = Flask(__name__) # Set the secret key for session management app.secret_key = os.urandom(24) # Configurations UPLOAD_FOLDER = "uploads/" VECTOR_DB_FOLDER = "VectorDB/" #TABLE_DB_FOLDER = "TableDB/" app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER os.makedirs(UPLOAD_FOLDER, exist_ok=True) os.makedirs(VECTOR_DB_FOLDER, exist_ok=True) #os.makedirs(TABLE_DB_FOLDER, exist_ok=True) # Global variables CHROMA_PATH = None TEMP_PATH = None #TABLE_PATH = None #System prompt '''PROMPT_TEMPLATE = """ You are working with a retrieval-augmented generation (RAG) setup. Your task is to generate a response based on the context provided and the question asked. Consider only the following context strictly, and use it to answer the question. If the question cannot be answered using the context, respond with: "The information requested is not mentioned in the context." Context: {context} --- Question: {question} Response: """ ''' PROMPT_TEMPLATE = """ You are working as a retrieval-augmented generation (RAG) assistant specializing in providing precise and accurate responses. Generate a response based only on the provided context and question, following these concrete instructions: - **Adhere strictly to the context:** Use only the information in the context to answer the question. Do not add any external details or assumptions. - **Handle multiple chunks:** The context is divided into chunks, separated by "###". Query-related information may be present in any chunk. - **Focus on relevance:** Identify and prioritize chunks relevant to the question while ignoring unrelated chunks. - **Answer concisely and factually:** Provide clear, direct, and structured responses based on the retrieved information. Context: {context} --- Question: {question} Response: """ #HFT = os.getenv('HF_TOKEN') #client = InferenceClient(api_key=HFT) @app.route('/', methods=['GET']) def home(): return render_template('home.html') @app.route('/chat', methods=['GET', 'POST']) def chat(): if 'history' not in session: session['history'] = [] print("sessionhist1",session['history']) global CHROMA_PATH #global TABLE_PATH #old_db = session.get('old_db', None) #print(f"Selected DB: {CHROMA_PATH}") #if TEMP_PATH is not None and TEMP_PATH != CHROMA_PATH: # session['history'] = [] #TEMP_PATH = CHROMA_PATH if request.method == 'POST': query_text = request.form['query_text'] if CHROMA_PATH is None: return render_template('chat.html', error="No vector database selected!", history=[]) # Load the selected Document Database embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") #embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function) results_document = db.similarity_search_with_relevance_scores(query_text, k=3) print("results------------------->",results_document) context_text_document = "\n\n---\n\n".join([doc.page_content for doc, _score in results_document]) # # Load the selected Table Database # #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") # embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") # tdb = Chroma(persist_directory=TABLE_PATH, embedding_function=embedding_function) # results_table = tdb.similarity_search_with_relevance_scores(query_text, k=2) # print("results------------------->",results_table) # context_text_table = "\n\n---\n\n".join([doc.page_content for doc, _score in results_table]) # Prepare the prompt and query the model prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE) prompt = prompt_template.format(context=context_text_document,question=query_text) #prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text) print("results------------------->",prompt) #Model Defining and its use repo_id = "mistralai/Mistral-7B-Instruct-v0.3" HFT = os.environ["HF_TOKEN"] llm = HuggingFaceEndpoint( repo_id=repo_id, max_tokens=3000, temperature=0.8, huggingfacehub_api_token=HFT, ) data= llm(prompt) #data = response.choices[0].message.content print("LLM response------------------>",data) # filtering the uneccessary context. if re.search(r'\bmention\b|\bnot mention\b|\bnot mentioned\b|\bnot contain\b|\bnot include\b|\bnot provide\b|\bdoes not\b|\bnot explicitly\b|\bnot explicitly mentioned\b', data, re.IGNORECASE): data = "We do not have information related to your query on our end." # Save the query and answer to the session history session['history'].append((query_text, data)) # Mark the session as modified to ensure it gets saved session.modified = True print("sessionhist2",session['history']) return render_template('chat.html', query_text=query_text, answer=data, history=session['history']) return render_template('chat.html', history=session['history']) ''' @app.route('/create-db', methods=['GET', 'POST']) def create_db(): if request.method == 'POST': db_name = request.form['db_name'] # Get all files from the uploaded folder files = request.files.getlist('folder') if not files: return "No files uploaded", 400 # if not exist os.makedirs(UPLOAD_FOLDER, exist_ok=True) # Define the base upload path upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name)) #upload_base_path = upload_base_path.replace("\\", "/") print(f"Base Upload Path: {upload_base_path}") os.makedirs(upload_base_path, exist_ok=True) # Save each file and recreate folder structure for file in files: print("file , files",files,file) #relative_path = file.filename # This should contain the subfolder structure file_path = os.path.join(upload_base_path) #file_path = file_path.replace("\\", "/") # Ensure the directory exists before saving the file print(f"Saving to: {file_path}") os.makedirs(os.path.dirname(file_path), exist_ok=True) # Get the file path and save it file_path = os.path.join(upload_base_path, secure_filename(file.filename)) file.save(file_path) # Generate datastore generate_data_store(upload_base_path, db_name) # # Clean up uploaded files (if needed) #if os.path.exists(app.config['UPLOAD_FOLDER']): # shutil.rmtree(app.config['UPLOAD_FOLDER']) return redirect(url_for('list_dbs')) return render_template('create_db.html') ''' @app.route('/create-db', methods=['GET', 'POST']) def create_db(): if request.method == 'POST': db_name = request.form['db_name'] # Ensure the upload folder exists os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True) # Define the base upload path upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name)) os.makedirs(upload_base_path, exist_ok=True) # Check for uploaded folder or files folder_files = request.files.getlist('folder') single_files = request.files.getlist('file') if folder_files and any(file.filename for file in folder_files): # Process folder files for file in folder_files: file_path = os.path.join(upload_base_path, secure_filename(file.filename)) os.makedirs(os.path.dirname(file_path), exist_ok=True) file.save(file_path) elif single_files and any(file.filename for file in single_files): # Process single files for file in single_files: file_path = os.path.join(upload_base_path, secure_filename(file.filename)) file.save(file_path) else: return "No files uploaded", 400 # Generate datastore generate_data_store(upload_base_path, db_name) return redirect(url_for('list_dbs')) return render_template('create_db.html') @app.route('/list-dbs', methods=['GET']) def list_dbs(): vector_dbs = [name for name in os.listdir(VECTOR_DB_FOLDER) if os.path.isdir(os.path.join(VECTOR_DB_FOLDER, name))] return render_template('list_dbs.html', vector_dbs=vector_dbs) @app.route('/select-db/', methods=['POST']) def select_db(db_name): #Selecting the Documnet Vector DB global CHROMA_PATH print(f"Selected DB: {CHROMA_PATH}") CHROMA_PATH = os.path.join(VECTOR_DB_FOLDER, db_name) CHROMA_PATH = CHROMA_PATH.replace("\\", "/") print(f"Selected DB: {CHROMA_PATH}") #Selecting the Table Vector DB # global TABLE_PATH # print(f"Selected DB: {TABLE_PATH}") # TABLE_PATH = os.path.join(TABLE_DB_FOLDER, db_name) # TABLE_PATH = TABLE_PATH.replace("\\", "/") # print(f"Selected DB: {TABLE_PATH}") return redirect(url_for('chat')) @app.route('/update-dbs/', methods=['GET','POST']) def update_db(db_name): if request.method == 'POST': db_name = request.form['db_name'] # Get all files from the uploaded folder files = request.files.getlist('folder') if not files: return "No files uploaded", 400 print(f"Selected DB: {db_name}") DB_PATH = os.path.join(VECTOR_DB_FOLDER, db_name) DB_PATH = DB_PATH.replace("\\", "/") print(f"Selected DB: {DB_PATH}") generate_data_store(DB_PATH, db_name) return redirect(url_for('list_dbs')) return render_template('update_db.html') if __name__ == "__main__": app.run(debug=False, use_reloader=False)