from flask import Flask, render_template, request, redirect, url_for, session, flash import os from werkzeug.utils import secure_filename #from retrival import generate_data_store from retrival import generate_data_store #,add_document_to_existing_db, delete_chunks_by_source from langchain_community.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings from langchain.prompts import ChatPromptTemplate from langchain_core.prompts import PromptTemplate, ChatPromptTemplate from langchain_huggingface import HuggingFaceEndpoint from huggingface_hub import InferenceClient from langchain.schema import Document from langchain_core.documents import Document from dotenv import load_dotenv import re import numpy as np import glob import shutil from werkzeug.utils import secure_filename import asyncio import nltk nltk.download('punkt_tab') import nltk nltk.download('averaged_perceptron_tagger_eng') app = Flask(__name__) # Set the secret key for session management app.secret_key = os.urandom(24) # Configurations UPLOAD_FOLDER = "uploads/" VECTOR_DB_FOLDER = "VectorDB/" TABLE_DB_FOLDER = "TableDB/" app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER os.makedirs(UPLOAD_FOLDER, exist_ok=True) os.makedirs(VECTOR_DB_FOLDER, exist_ok=True) os.makedirs(TABLE_DB_FOLDER, exist_ok=True) # Global variables CHROMA_PATH = None TABLE_PATH = None PROMPT_TEMPLATE_DOC = """ [INST] You are a retrieval-augmented generation (RAG) assistant. Your task is to generate a response strictly based on the given context. Follow these instructions: - Use only the provided context; do not add external information. - The context contains multiple retrieved chunks separated by "###". Choose only the most relevant chunks to answer the question and ignore unrelated ones. - If available, use the provided source information to support the response. - Answer concisely and factually. Context: {context} --- Question: {question} Response: [/INST] """ # prompt if the document having the tables PROMPT_TEMPLATE_TAB = """ [INST] You are a retrieval-augmented generation (RAG) assistant. Your task is to generate a response strictly based on the given context. Follow these instructions: - Use only the provided context; do not add external information. - The context contains multiple retrieved chunks separated by "###". Choose only the most relevant chunks to answer the question and ignore unrelated ones. - If available, use the provided source information to support the response. - If a table is provided as html, incorporate its relevant details into the response while maintaining a structured format. - Answer concisely and factually. Context: {context} --- Table: {table} --- Question: {question} Response: [/INST] """ #HFT = os.getenv('HF_TOKEN') #client = InferenceClient(api_key=HFT) @app.route('/', methods=['GET']) def home(): return render_template('home.html') @app.route('/chat', methods=['GET', 'POST']) def chat(): if 'history' not in session: session['history'] = [] print("sessionhist1",session['history']) global CHROMA_PATH global TABLE_PATH old_db = session.get('old_db', None) print(f"Selected DB: {CHROMA_PATH}") # if old_db != None: # if CHROMA_PATH != old_db: # session['history'] = [] #print("sessionhist1",session['history']) if request.method == 'POST': query_text = request.form['query_text'] if CHROMA_PATH is None: flash("Please select a database first!", "error") return redirect(url_for('list_dbs')) # Load the selected Document Database embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") #embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function) # Convert the query to its embedding vector query_embedding = embedding_function.embed_query(query_text) if isinstance(query_embedding, float): query_embedding = [query_embedding] # print(f"Query embedding: {query_embedding}") # print(f"Type of query embedding: {type(query_embedding)}") # print(f"Length of query embedding: {len(query_embedding) if isinstance(query_embedding, (list, np.ndarray)) else 'Not applicable'}") results_document = db.similarity_search_by_vector_with_relevance_scores( embedding=query_embedding, # Pass the query embedding k=3, #filter=filter_condition # Pass the filter condition ) print("results------------------->",results_document) print("============================================") print("============================================") context_text_document = " \n\n###\n\n ".join( [f"Source: {doc.metadata.get('source', '')} Page_content:{doc.page_content}\n" for doc, _score in results_document] ) # Loading Table Database only if available if TABLE_PATH is not None: #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") tdb = Chroma(persist_directory=TABLE_PATH, embedding_function=embedding_function) results_table = tdb.similarity_search_by_vector_with_relevance_scores( embedding=query_embedding, # Pass the query embedding k=2 #filter=filter_condition # Pass the filter condition ) print("results------------------->",results_table) context_text_table = "\n\n---\n\n".join([doc.page_content for doc, _score in results_table]) # Prepare the prompt and query the model prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE_TAB) prompt = prompt_template.format(context=context_text_document,table=context_text_table,question=query_text) #prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text) print("results------------------->",prompt) else: # Prepare the prompt and query the model prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE_DOC) prompt = prompt_template.format(context=context_text_document,question=query_text) #prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text) print("results------------------->",prompt) #Model Defining and its use repo_id = "mistralai/Mistral-7B-Instruct-v0.3" HFT = os.environ["HF_TOKEN"] llm = HuggingFaceEndpoint( repo_id=repo_id, #max_tokens=3000, max_new_tokens=2000, temperature=0.8, huggingfacehub_api_token=HFT, ) data= llm(prompt) #data = response.choices[0].message.content # filtering the uneccessary context. if re.search(r'\bmention\b|\bnot mention\b|\bnot mentioned\b|\bnot contain\b|\bnot include\b|\bnot provide\b|\bdoes not\b|\bnot explicitly\b|\bnot explicitly mentioned\b', data, re.IGNORECASE): data = "We do not have information related to your query on our end." # Save the query and answer to the session history session['history'].append((query_text, data)) # Mark the session as modified to ensure it gets saved session.modified = True print("sessionhist2",session['history']) return render_template('chat.html', query_text=query_text, answer=data, history=session['history'],old_db=CHROMA_PATH) return render_template('chat.html', history=session['history'], old_db=CHROMA_PATH) @app.route('/create-db', methods=['GET', 'POST']) def create_db(): if request.method == 'POST': db_name = request.form.get('db_name', '').strip() if not db_name: return "Database name is required", 400 # Get uploaded files files = request.files.getlist('folder') # Folder uploads (multiple files) single_files = request.files.getlist('file') # Single file uploads print("==================folder==>", files) print("==================single_files==>", single_files) # Ensure at least one valid file is uploaded if not any(file.filename.strip() for file in files) and not any(file.filename.strip() for file in single_files): return "No files uploaded", 400 # Create upload directory upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name)) print(f"Base Upload Path: {upload_base_path}") os.makedirs(upload_base_path, exist_ok=True) # Process single file uploads first (if any exist) if any(file.filename.strip() for file in single_files): for file in single_files: if file.filename.strip(): # Ensure the file is valid file_name = secure_filename(file.filename) file_path = os.path.join(upload_base_path, file_name) print(f"Saving single file to: {file_path}") file.save(file_path) # If single file is uploaded, skip folder processing print("Single file uploaded, skipping folder processing.") asyncio.run(generate_data_store(upload_base_path, db_name)) return redirect(url_for('list_dbs')) # Process folder files only if valid files exist if any(file.filename.strip() for file in files): for file in files: if file.filename.strip(): # Ensure it's a valid file file_name = secure_filename(file.filename) file_path = os.path.join(upload_base_path, file_name) print(f"Saving folder file to: {file_path}") file.save(file_path) # Generate datastore asyncio.run(generate_data_store(upload_base_path, db_name)) return redirect(url_for('list_dbs')) return render_template('create_db.html') @app.route('/list-dbs', methods=['GET']) def list_dbs(): vector_dbs = [name for name in os.listdir(VECTOR_DB_FOLDER) if os.path.isdir(os.path.join(VECTOR_DB_FOLDER, name))] return render_template('list_dbs.html', vector_dbs=vector_dbs) @app.route('/select-db/', methods=['POST']) def select_db(db_name): flash(f"{db_name} Database has been selected", "table_selected") #Selecting the Documnet Vector DB global CHROMA_PATH global TABLE_PATH print(f"Selected DB: {CHROMA_PATH}") print("-----------------------------------------------------1----") CHROMA_PATH = os.path.join(VECTOR_DB_FOLDER, db_name) CHROMA_PATH = CHROMA_PATH.replace("\\", "/") print(f"Selected DB: {CHROMA_PATH}") print("-----------------------------------------------------2----") # Selecting the Table Vector DB table_db_path = os.path.join(TABLE_DB_FOLDER, db_name) table_db_path = table_db_path.replace("\\", "/") TABLE_PATH = table_db_path if os.path.exists(table_db_path) else None print(f"Selected Table DB: {TABLE_PATH}") return redirect(url_for('chat')) @app.route('/update-dbs/', methods=['GET','POST']) def update_db(db_name): if request.method == 'POST': db_name = request.form['db_name'] # Get all files from the uploaded folder files = request.files.getlist('folder') if not files: return "No files uploaded", 400 print(f"Selected DB: {db_name}") DB_PATH = os.path.join(VECTOR_DB_FOLDER, db_name) DB_PATH = DB_PATH.replace("\\", "/") print(f"Selected DB: {DB_PATH}") generate_data_store(DB_PATH, db_name) return redirect(url_for('list_dbs')) return render_template('update_db.html') if __name__ == "__main__": app.run(debug=False, use_reloader=False)