Spaces:
Running
Running
Update retrival.py
Browse files- retrival.py +69 -65
retrival.py
CHANGED
@@ -258,13 +258,14 @@ def split_text(documents: list[Document]):
|
|
258 |
####---------------------------------------------------- Creating and Storeing Data in Vector DB --------------------------------------------------####
|
259 |
########################################################################################################################################################
|
260 |
|
261 |
-
def save_to_chroma(chunks: list[Document], name: str, tables: list[Document]):
|
262 |
-
|
263 |
-
|
|
|
264 |
if os.path.exists(CHROMA_PATH):
|
265 |
shutil.rmtree(CHROMA_PATH)
|
266 |
-
if os.path.exists(TABLE_PATH):
|
267 |
-
|
268 |
|
269 |
try:
|
270 |
# Load the embedding model
|
@@ -279,19 +280,21 @@ def save_to_chroma(chunks: list[Document], name: str, tables: list[Document]):
|
|
279 |
)
|
280 |
print("Document database successfully saved.")
|
281 |
|
282 |
-
# Create Chroma DB for tables if available [NOTE: Some of the data is converted to string because int and float show null if added]
|
283 |
-
if tables:
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
else:
|
292 |
-
|
293 |
-
|
294 |
-
return db, tdb
|
|
|
|
|
295 |
except Exception as e:
|
296 |
print("Error while saving to Chroma:", e)
|
297 |
return None
|
@@ -306,54 +309,54 @@ def save_to_chroma(chunks: list[Document], name: str, tables: list[Document]):
|
|
306 |
####----------------------------------------------------------- Updating Existing Data in Vector DB -----------------------------------------------####
|
307 |
########################################################################################################################################################
|
308 |
|
309 |
-
def add_document_to_existing_db(new_documents: list[Document], db_name: str):
|
310 |
-
|
311 |
-
|
312 |
-
if not os.path.exists(CHROMA_PATH):
|
313 |
-
print(f"Database '{db_name}' does not exist. Please create it first.")
|
314 |
-
return
|
315 |
-
|
316 |
-
try:
|
317 |
-
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
318 |
-
#embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
319 |
-
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
320 |
-
|
321 |
-
print("Adding new documents to the existing database...")
|
322 |
-
chunks = split_text(new_documents)
|
323 |
-
db.add_documents(chunks)
|
324 |
-
db.persist()
|
325 |
-
print("New documents added and database updated successfully.")
|
326 |
-
except Exception as e:
|
327 |
-
print("Error while adding documents to existing database:", e)
|
328 |
-
|
329 |
-
def delete_chunks_by_source(chroma_path, source_to_delete):
|
330 |
-
if not os.path.exists(chroma_path):
|
331 |
-
print(f"Database at path '{chroma_path}' does not exist.")
|
332 |
-
return
|
333 |
-
|
334 |
-
try:
|
335 |
-
#embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
336 |
-
embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
337 |
-
db = Chroma(persist_directory=chroma_path, embedding_function=embedding_function)
|
338 |
|
339 |
-
|
340 |
-
|
|
|
341 |
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
-
|
348 |
-
|
349 |
-
|
|
|
350 |
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
# # update a data store
|
359 |
# def update_data_store(file_path, db_name):
|
@@ -390,21 +393,22 @@ def generate_data_store(file_path, db_name):
|
|
390 |
print(f"Filepath ===> {file_path} DB Name ====> {db_name}")
|
391 |
|
392 |
try:
|
393 |
-
documents,
|
394 |
print("Documents loaded successfully.")
|
395 |
except Exception as e:
|
396 |
print(f"Error loading documents: {e}")
|
397 |
return
|
398 |
|
399 |
try:
|
400 |
-
chunks = split_text(
|
401 |
print(f"Text split into {len(chunks)} chunks.")
|
402 |
except Exception as e:
|
403 |
print(f"Error splitting text: {e}")
|
404 |
return
|
405 |
|
406 |
try:
|
407 |
-
asyncio.run(save_to_chroma(save_to_chroma(chunks, db_name, table_document)))
|
|
|
408 |
print(f"Data saved to Chroma for database {db_name}.")
|
409 |
except Exception as e:
|
410 |
print(f"Error saving to Chroma: {e}")
|
|
|
258 |
####---------------------------------------------------- Creating and Storeing Data in Vector DB --------------------------------------------------####
|
259 |
########################################################################################################################################################
|
260 |
|
261 |
+
#def save_to_chroma(chunks: list[Document], name: str, tables: list[Document]):
|
262 |
+
def save_to_chroma(chunks: list[Document], name: str):
|
263 |
+
CHROMA_PATH = f"./VectorDB/chroma_{name}"
|
264 |
+
#TABLE_PATH = f"./TableDB/chroma_{name}"
|
265 |
if os.path.exists(CHROMA_PATH):
|
266 |
shutil.rmtree(CHROMA_PATH)
|
267 |
+
# if os.path.exists(TABLE_PATH):
|
268 |
+
# shutil.rmtree(TABLE_PATH)
|
269 |
|
270 |
try:
|
271 |
# Load the embedding model
|
|
|
280 |
)
|
281 |
print("Document database successfully saved.")
|
282 |
|
283 |
+
# # Create Chroma DB for tables if available [NOTE: Some of the data is converted to string because int and float show null if added]
|
284 |
+
# if tables:
|
285 |
+
# print("Creating table vector database...")
|
286 |
+
# tdb = Chroma.from_documents(
|
287 |
+
# documents=tables,
|
288 |
+
# embedding=embedding_function,
|
289 |
+
# persist_directory=TABLE_PATH,
|
290 |
+
# )
|
291 |
+
# print("Table database successfully saved.")
|
292 |
+
# else:
|
293 |
+
# tdb = None
|
294 |
+
|
295 |
+
#return db, tdb
|
296 |
+
return db
|
297 |
+
|
298 |
except Exception as e:
|
299 |
print("Error while saving to Chroma:", e)
|
300 |
return None
|
|
|
309 |
####----------------------------------------------------------- Updating Existing Data in Vector DB -----------------------------------------------####
|
310 |
########################################################################################################################################################
|
311 |
|
312 |
+
# def add_document_to_existing_db(new_documents: list[Document], db_name: str):
|
313 |
+
# CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
+
# if not os.path.exists(CHROMA_PATH):
|
316 |
+
# print(f"Database '{db_name}' does not exist. Please create it first.")
|
317 |
+
# return
|
318 |
|
319 |
+
# try:
|
320 |
+
# embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
321 |
+
# #embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
322 |
+
# db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
323 |
+
|
324 |
+
# print("Adding new documents to the existing database...")
|
325 |
+
# chunks = split_text(new_documents)
|
326 |
+
# db.add_documents(chunks)
|
327 |
+
# db.persist()
|
328 |
+
# print("New documents added and database updated successfully.")
|
329 |
+
# except Exception as e:
|
330 |
+
# print("Error while adding documents to existing database:", e)
|
331 |
|
332 |
+
# def delete_chunks_by_source(chroma_path, source_to_delete):
|
333 |
+
# if not os.path.exists(chroma_path):
|
334 |
+
# print(f"Database at path '{chroma_path}' does not exist.")
|
335 |
+
# return
|
336 |
|
337 |
+
# try:
|
338 |
+
# #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
339 |
+
# embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
340 |
+
# db = Chroma(persist_directory=chroma_path, embedding_function=embedding_function)
|
341 |
+
|
342 |
+
# print(f"Retrieving all metadata to identify chunks with source '{source_to_delete}'...")
|
343 |
+
# metadata_list = db.get()["metadatas"]
|
344 |
+
|
345 |
+
# # Identify indices of chunks to delete
|
346 |
+
# indices_to_delete = [
|
347 |
+
# idx for idx, metadata in enumerate(metadata_list) if metadata.get("source") == source_to_delete
|
348 |
+
# ]
|
349 |
+
|
350 |
+
# if not indices_to_delete:
|
351 |
+
# print(f"No chunks found with source '{source_to_delete}'.")
|
352 |
+
# return
|
353 |
+
|
354 |
+
# print(f"Deleting {len(indices_to_delete)} chunks with source '{source_to_delete}'...")
|
355 |
+
# db.delete(indices=indices_to_delete)
|
356 |
+
# db.persist()
|
357 |
+
# print("Chunks deleted and database updated successfully.")
|
358 |
+
# except Exception as e:
|
359 |
+
# print(f"Error while deleting chunks by source: {e}")
|
360 |
|
361 |
# # update a data store
|
362 |
# def update_data_store(file_path, db_name):
|
|
|
393 |
print(f"Filepath ===> {file_path} DB Name ====> {db_name}")
|
394 |
|
395 |
try:
|
396 |
+
documents,grouped_documents = load_document(file_path)
|
397 |
print("Documents loaded successfully.")
|
398 |
except Exception as e:
|
399 |
print(f"Error loading documents: {e}")
|
400 |
return
|
401 |
|
402 |
try:
|
403 |
+
chunks = split_text(grouped_documents)
|
404 |
print(f"Text split into {len(chunks)} chunks.")
|
405 |
except Exception as e:
|
406 |
print(f"Error splitting text: {e}")
|
407 |
return
|
408 |
|
409 |
try:
|
410 |
+
#asyncio.run(save_to_chroma(save_to_chroma(chunks, db_name, table_document)))
|
411 |
+
asyncio.run(save_to_chroma(save_to_chroma(chunks, db_name)))
|
412 |
print(f"Data saved to Chroma for database {db_name}.")
|
413 |
except Exception as e:
|
414 |
print(f"Error saving to Chroma: {e}")
|