Spaces:
Running
Running
Update retrival.py
Browse files- retrival.py +121 -73
retrival.py
CHANGED
@@ -317,80 +317,119 @@ async def save_to_chroma(chunks: list[Document], name: str, tables: list[Documen
|
|
317 |
####----------------------------------------------------------- Updating Existing Data in Vector DB -----------------------------------------------####
|
318 |
########################################################################################################################################################
|
319 |
|
320 |
-
#
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
#
|
329 |
-
|
330 |
-
#
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
#
|
335 |
-
#
|
336 |
-
#
|
337 |
-
#
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
# try:
|
346 |
-
# #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
347 |
-
# embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
348 |
-
# db = Chroma(persist_directory=chroma_path, embedding_function=embedding_function)
|
349 |
-
|
350 |
-
# print(f"Retrieving all metadata to identify chunks with source '{source_to_delete}'...")
|
351 |
-
# metadata_list = db.get()["metadatas"]
|
352 |
-
|
353 |
-
# # Identify indices of chunks to delete
|
354 |
-
# indices_to_delete = [
|
355 |
-
# idx for idx, metadata in enumerate(metadata_list) if metadata.get("source") == source_to_delete
|
356 |
-
# ]
|
357 |
-
|
358 |
-
# if not indices_to_delete:
|
359 |
-
# print(f"No chunks found with source '{source_to_delete}'.")
|
360 |
-
# return
|
361 |
-
|
362 |
-
# print(f"Deleting {len(indices_to_delete)} chunks with source '{source_to_delete}'...")
|
363 |
-
# db.delete(indices=indices_to_delete)
|
364 |
-
# db.persist()
|
365 |
-
# print("Chunks deleted and database updated successfully.")
|
366 |
-
# except Exception as e:
|
367 |
-
# print(f"Error while deleting chunks by source: {e}")
|
368 |
|
369 |
-
#
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
#
|
391 |
-
|
392 |
-
|
393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
|
395 |
########################################################################################################################################################
|
396 |
####------------------------------------------------------- Combine Process of Load, Chunk and Store ----------------------------------------------####
|
@@ -423,3 +462,12 @@ async def generate_data_store(file_path, db_name):
|
|
423 |
print(f"Error saving to Chroma: {e}")
|
424 |
return
|
425 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
####----------------------------------------------------------- Updating Existing Data in Vector DB -----------------------------------------------####
|
318 |
########################################################################################################################################################
|
319 |
|
320 |
+
# adding document to Existing db
|
321 |
+
async def add_document_to_existing_db(new_chunks: list[Document], db_name: str,tables: list[Document]):
|
322 |
+
CHROMA_PATH = f"./VectorDB/{db_name}"
|
323 |
+
TABLE_PATH = f"./TableDB/{db_name}"
|
324 |
+
if not os.path.exists(CHROMA_PATH):
|
325 |
+
print(f"Database '{db_name}' does not exist. Please create it first.")
|
326 |
+
return
|
327 |
+
try:
|
328 |
+
# Load the embedding model
|
329 |
+
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2",show_progress=True)
|
330 |
+
#embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
331 |
+
# Create Chroma DB for documents using from_documents [NOTE: Some of the data is converted to string because int and float show null if added]
|
332 |
+
print("Creating document vector database...")
|
333 |
+
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
334 |
+
# db =Chroma.from_documents(
|
335 |
+
# documents=new_chunks,
|
336 |
+
# embedding=embedding_function,
|
337 |
+
# persist_directory=CHROMA_PATH,
|
338 |
+
|
339 |
+
# )
|
340 |
+
print("Persisting the document database...")
|
341 |
+
db.add_documents(new_chunks)
|
342 |
+
db.persist()
|
343 |
+
print("Document database successfully saved.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
|
345 |
+
# Create Chroma DB for tables if available [NOTE: Some of the data is converted to string because int and float show null if added]
|
346 |
+
if tables !=[]:
|
347 |
+
print("Creating table vector database...")
|
348 |
+
if not os.path.exists(TABLE_PATH):
|
349 |
+
print(f"Database '{db_name}' does not exist. Lets create it first.")
|
350 |
+
print("Persisting the table database...")
|
351 |
+
tdb =Chroma.from_documents(
|
352 |
+
documents=tables,
|
353 |
+
embedding=embedding_function,
|
354 |
+
persist_directory=TABLE_PATH,
|
355 |
+
)
|
356 |
+
else:
|
357 |
+
tdb = Chroma(persist_directory=TABLE_PATH, embedding_function=embedding_function)
|
358 |
+
print("Persisting the table database...")
|
359 |
+
db.add_documents(tables)
|
360 |
+
db.persist()
|
361 |
+
print("Table database successfully saved.")
|
362 |
+
else:
|
363 |
+
tdb = None
|
364 |
+
|
365 |
+
return db, tdb
|
366 |
+
#return db
|
367 |
+
|
368 |
+
except Exception as e:
|
369 |
+
print("Error while saving to Chroma:", e)
|
370 |
+
return None
|
371 |
+
|
372 |
+
#delete chunks by logics
|
373 |
+
def delete_chunks_by_source(chroma_path, source_to_delete):
|
374 |
+
if not os.path.exists(chroma_path):
|
375 |
+
print(f"Database at path '{chroma_path}' does not exist.")
|
376 |
+
return
|
377 |
+
|
378 |
+
try:
|
379 |
+
#embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
380 |
+
embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
381 |
+
db = Chroma(persist_directory=chroma_path, embedding_function=embedding_function)
|
382 |
+
|
383 |
+
print(f"Retrieving all metadata to identify chunks with source '{source_to_delete}'...")
|
384 |
+
metadata_list = db.get()["metadatas"]
|
385 |
+
|
386 |
+
# Identify indices of chunks to delete
|
387 |
+
indices_to_delete = [
|
388 |
+
idx for idx, metadata in enumerate(metadata_list) if metadata.get("source") == source_to_delete
|
389 |
+
]
|
390 |
+
|
391 |
+
if not indices_to_delete:
|
392 |
+
print(f"No chunks found with source '{source_to_delete}'.")
|
393 |
+
return
|
394 |
+
|
395 |
+
print(f"Deleting {len(indices_to_delete)} chunks with source '{source_to_delete}'...")
|
396 |
+
db.delete(indices=indices_to_delete)
|
397 |
+
db.persist()
|
398 |
+
print("Chunks deleted and database updated successfully.")
|
399 |
+
except Exception as e:
|
400 |
+
print(f"Error while deleting chunks by source: {e}")
|
401 |
+
|
402 |
+
########################################################################################################################################################
|
403 |
+
####-----------------------------------------------Combine Process of upload, Chunk and Store (FOR NEW DOC)----------------------------------------####
|
404 |
+
########################################################################################################################################################
|
405 |
+
|
406 |
+
# update a data store
|
407 |
+
async def update_data_store(file_path, db_name):
|
408 |
+
CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
|
409 |
+
print(f"Filepath ===> {file_path} DB Name ====> {db_name}")
|
410 |
+
|
411 |
+
try:
|
412 |
+
documents,processed_documents,table_document = load_document(file_path)
|
413 |
+
#grouped_document,document = load_document(file_path)
|
414 |
+
print("Documents loaded successfully.")
|
415 |
+
except Exception as e:
|
416 |
+
print(f"Error loading documents: {e}")
|
417 |
+
return
|
418 |
+
|
419 |
+
try:
|
420 |
+
chunks = split_text(documents)
|
421 |
+
print(f"Text split into {len(chunks)} chunks.")
|
422 |
+
except Exception as e:
|
423 |
+
print(f"Error splitting text: {e}")
|
424 |
+
return
|
425 |
+
|
426 |
+
try:
|
427 |
+
await add_document_to_existing_db(chunks, db_name, table_document)
|
428 |
+
#await asyncio.run(save_to_chroma(chunks, db_name,table_document))
|
429 |
+
print(f"Data saved to Chroma for database {db_name}.")
|
430 |
+
except Exception as e:
|
431 |
+
print(f"Error saving to Chroma: {e}")
|
432 |
+
return
|
433 |
|
434 |
########################################################################################################################################################
|
435 |
####------------------------------------------------------- Combine Process of Load, Chunk and Store ----------------------------------------------####
|
|
|
462 |
print(f"Error saving to Chroma: {e}")
|
463 |
return
|
464 |
|
465 |
+
########################################################################################################################################################
|
466 |
+
####-------------------------------------------------------------------- Token counter -----------------------------------------------------------####
|
467 |
+
########################################################################################################################################################
|
468 |
+
|
469 |
+
def approximate_bpe_token_counter(text):
|
470 |
+
# Split on spaces, punctuation, and common subword patterns
|
471 |
+
tokens = re.findall(r"\w+|[^\w\s]", text, re.UNICODE)
|
472 |
+
return len(tokens)
|
473 |
+
|