Spaces:
Running
Running
Update N.TXT
Browse files
N.TXT
CHANGED
@@ -296,4 +296,431 @@ def update_db(db_name):
|
|
296 |
if __name__ == "__main__":
|
297 |
app.run(debug=False, use_reloader=False)
|
298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
|
|
296 |
if __name__ == "__main__":
|
297 |
app.run(debug=False, use_reloader=False)
|
298 |
|
299 |
+
|
300 |
+
|
301 |
+
RETRIVAL PY
|
302 |
+
|
303 |
+
|
304 |
+
from langchain_community.document_loaders import DirectoryLoader
|
305 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
306 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
307 |
+
from langchain.schema import Document
|
308 |
+
from langchain_core.documents import Document
|
309 |
+
from langchain_community.vectorstores import Chroma
|
310 |
+
import os
|
311 |
+
import shutil
|
312 |
+
import asyncio
|
313 |
+
from unstructured.partition.pdf import partition_pdf
|
314 |
+
from unstructured.partition.auto import partition
|
315 |
+
import pytesseract
|
316 |
+
import os
|
317 |
+
import re
|
318 |
+
import uuid
|
319 |
+
from collections import defaultdict
|
320 |
+
|
321 |
+
pytesseract.pytesseract.tesseract_cmd = (r'/usr/bin/tesseract')
|
322 |
+
|
323 |
+
# Configurations
|
324 |
+
UPLOAD_FOLDER = "./uploads"
|
325 |
+
VECTOR_DB_FOLDER = "./VectorDB"
|
326 |
+
IMAGE_DB_FOLDER = "./Images"
|
327 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
328 |
+
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
|
329 |
+
|
330 |
+
########################################################################################################################################################
|
331 |
+
####-------------------------------------------------------------- Documnet Loader ---------------------------------------------------------------####
|
332 |
+
########################################################################################################################################################
|
333 |
+
# Loaders for loading Document text, tables and images from any file format.
|
334 |
+
#data_path=r"H:\DEV PATEL\2025\RAG Project\test_data\google data"
|
335 |
+
def load_document(data_path):
|
336 |
+
processed_documents = []
|
337 |
+
element_content = []
|
338 |
+
table_document = []
|
339 |
+
#having different process for the pdf
|
340 |
+
for root, _, files in os.walk(data_path):
|
341 |
+
for file in files:
|
342 |
+
file_path = os.path.join(root, file)
|
343 |
+
doc_id = str(uuid.uuid4()) # Generate a unique ID for the document
|
344 |
+
|
345 |
+
print(f"Processing document ID: {doc_id}, Path: {file_path}")
|
346 |
+
|
347 |
+
try:
|
348 |
+
# Determine the file type based on extension
|
349 |
+
filename, file_extension = os.path.splitext(file.lower())
|
350 |
+
image_output = f"./Images/{filename}/"
|
351 |
+
# Use specific partition techniques based on file extension
|
352 |
+
if file_extension == ".pdf":
|
353 |
+
elements = partition_pdf(
|
354 |
+
filename=file_path,
|
355 |
+
strategy="hi_res", # Use layout detection
|
356 |
+
infer_table_structure=True,
|
357 |
+
hi_res_model_name="yolox",
|
358 |
+
extract_images_in_pdf=True,
|
359 |
+
extract_image_block_types=["Image","Table"],
|
360 |
+
extract_image_block_output_dir=image_output,
|
361 |
+
show_progress=True,
|
362 |
+
#chunking_strategy="by_title",
|
363 |
+
)
|
364 |
+
else:
|
365 |
+
# Default to auto partition if no specific handler is found
|
366 |
+
elements = partition(
|
367 |
+
filename=file_path,
|
368 |
+
strategy="hi_res",
|
369 |
+
infer_table_structure=True,
|
370 |
+
show_progress=True,
|
371 |
+
#chunking_strategy="by_title"
|
372 |
+
)
|
373 |
+
except Exception as e:
|
374 |
+
print(f"Failed to process document {file_path}: {e}")
|
375 |
+
continue
|
376 |
+
categorized_content = {
|
377 |
+
"tables": {"content": [], "Metadata": []},
|
378 |
+
"images": {"content": [], "Metadata": []},
|
379 |
+
"text": {"content": [], "Metadata": []},
|
380 |
+
"text2": {"content": [], "Metadata": []}
|
381 |
+
}
|
382 |
+
element_content.append(elements)
|
383 |
+
CNT=1
|
384 |
+
for chunk in elements:
|
385 |
+
# Safely extract metadata and text
|
386 |
+
chunk_type = str(type(chunk))
|
387 |
+
chunk_metadata = chunk.metadata.to_dict() if chunk.metadata else {}
|
388 |
+
chunk_text = getattr(chunk, "text", None)
|
389 |
+
|
390 |
+
# Separate content into categories
|
391 |
+
#if "Table" in chunk_type:
|
392 |
+
if any(
|
393 |
+
keyword in chunk_type
|
394 |
+
for keyword in [
|
395 |
+
"Table",
|
396 |
+
"TableChunk"]):
|
397 |
+
categorized_content["tables"]["content"].append(chunk_text)
|
398 |
+
categorized_content["tables"]["Metadata"].append(chunk_metadata)
|
399 |
+
|
400 |
+
#test1
|
401 |
+
TABLE_DATA=f"Table number {CNT} "+chunk_metadata.get("text_as_html", "")+" "
|
402 |
+
CNT+=1
|
403 |
+
categorized_content["text"]["content"].append(TABLE_DATA)
|
404 |
+
categorized_content["text"]["Metadata"].append(chunk_metadata)
|
405 |
+
|
406 |
+
elif "Image" in chunk_type:
|
407 |
+
categorized_content["images"]["content"].append(chunk_text)
|
408 |
+
categorized_content["images"]["Metadata"].append(chunk_metadata)
|
409 |
+
elif any(
|
410 |
+
keyword in chunk_type
|
411 |
+
for keyword in [
|
412 |
+
"CompositeElement",
|
413 |
+
"Text",
|
414 |
+
"NarrativeText",
|
415 |
+
"Title",
|
416 |
+
"Header",
|
417 |
+
"Footer",
|
418 |
+
"FigureCaption",
|
419 |
+
"ListItem",
|
420 |
+
"UncategorizedText",
|
421 |
+
"Formula",
|
422 |
+
"CodeSnippet",
|
423 |
+
"Address",
|
424 |
+
"EmailAddress",
|
425 |
+
"PageBreak",
|
426 |
+
]
|
427 |
+
):
|
428 |
+
categorized_content["text"]["content"].append(chunk_text)
|
429 |
+
categorized_content["text"]["Metadata"].append(chunk_metadata)
|
430 |
+
|
431 |
+
else:
|
432 |
+
continue
|
433 |
+
# Append processed document
|
434 |
+
processed_documents.append({
|
435 |
+
"doc_id": doc_id,
|
436 |
+
"source": file_path,
|
437 |
+
**categorized_content,
|
438 |
+
})
|
439 |
+
|
440 |
+
# Loop over tables and match text from the same document and page
|
441 |
+
|
442 |
+
'''
|
443 |
+
for doc in processed_documents:
|
444 |
+
cnt=1 # count for storing number of the table
|
445 |
+
for table_metadata in doc.get("tables", {}).get("Metadata", []):
|
446 |
+
page_number = table_metadata.get("page_number")
|
447 |
+
source = doc.get("source")
|
448 |
+
page_content = ""
|
449 |
+
|
450 |
+
for text_metadata, text_content in zip(
|
451 |
+
doc.get("text", {}).get("Metadata", []),
|
452 |
+
doc.get("text", {}).get("content", [])
|
453 |
+
):
|
454 |
+
page_number2 = text_metadata.get("page_number")
|
455 |
+
source2 = doc.get("source")
|
456 |
+
|
457 |
+
if source == source2 and page_number == page_number2:
|
458 |
+
print(f"Matching text found for source: {source}, page: {page_number}")
|
459 |
+
page_content += f"{text_content} " # Concatenate text with a space
|
460 |
+
|
461 |
+
# Add the matched content to the table metadata
|
462 |
+
table_metadata["page_content"] =f"Table number {cnt} "+table_metadata.get("text_as_html", "")+" "+page_content.strip() # Remove trailing spaces and have the content proper here
|
463 |
+
table_metadata["text_as_html"] = table_metadata.get("text_as_html", "") # we are also storing it seperatly
|
464 |
+
table_metadata["Table_number"] = cnt # addiing the table number it will be use in retrival
|
465 |
+
cnt+=1
|
466 |
+
|
467 |
+
# Custom loader of document which will store the table along with the text on that page specifically
|
468 |
+
# making document of each table with its content
|
469 |
+
unique_id = str(uuid.uuid4())
|
470 |
+
table_document.append(
|
471 |
+
Document(
|
472 |
+
|
473 |
+
id =unique_id, # Add doc_id directly
|
474 |
+
page_content=table_metadata.get("page_content", ""), # Get page_content from metadata, default to empty string if missing
|
475 |
+
metadata={
|
476 |
+
"source": doc["source"],
|
477 |
+
"text_as_html": table_metadata.get("text_as_html", ""),
|
478 |
+
"filetype": table_metadata.get("filetype", ""),
|
479 |
+
"page_number": str(table_metadata.get("page_number", 0)), # Default to 0 if missing
|
480 |
+
"image_path": table_metadata.get("image_path", ""),
|
481 |
+
"file_directory": table_metadata.get("file_directory", ""),
|
482 |
+
"filename": table_metadata.get("filename", ""),
|
483 |
+
"Table_number": str(table_metadata.get("Table_number", 0)) # Default to 0 if missing
|
484 |
+
}
|
485 |
+
)
|
486 |
+
)
|
487 |
+
'''
|
488 |
+
|
489 |
+
# Initialize a structure to group content by doc_id
|
490 |
+
grouped_by_doc_id = defaultdict(lambda: {
|
491 |
+
"text_content": [],
|
492 |
+
"metadata": None, # Metadata will only be set once per doc_id
|
493 |
+
})
|
494 |
+
|
495 |
+
for doc in processed_documents:
|
496 |
+
doc_id = doc.get("doc_id")
|
497 |
+
source = doc.get("source")
|
498 |
+
text_content = doc.get("text", {}).get("content", [])
|
499 |
+
metadata_list = doc.get("text", {}).get("Metadata", [])
|
500 |
+
|
501 |
+
# Merge text content
|
502 |
+
grouped_by_doc_id[doc_id]["text_content"].extend(text_content)
|
503 |
+
|
504 |
+
# Set metadata (if not already set)
|
505 |
+
if grouped_by_doc_id[doc_id]["metadata"] is None and metadata_list:
|
506 |
+
metadata = metadata_list[0] # Assuming metadata is consistent
|
507 |
+
grouped_by_doc_id[doc_id]["metadata"] = {
|
508 |
+
"source": source,
|
509 |
+
"filetype": metadata.get("filetype"),
|
510 |
+
"file_directory": metadata.get("file_directory"),
|
511 |
+
"filename": metadata.get("filename"),
|
512 |
+
"languages": str(metadata.get("languages")),
|
513 |
+
}
|
514 |
+
|
515 |
+
# Convert grouped content into Document objects
|
516 |
+
grouped_documents = []
|
517 |
+
for doc_id, data in grouped_by_doc_id.items():
|
518 |
+
grouped_documents.append(
|
519 |
+
Document(
|
520 |
+
id=doc_id,
|
521 |
+
page_content=" ".join(data["text_content"]).strip(),
|
522 |
+
metadata=data["metadata"],
|
523 |
+
)
|
524 |
+
)
|
525 |
+
|
526 |
+
# Output the grouped documents
|
527 |
+
for document in grouped_documents:
|
528 |
+
print(document)
|
529 |
+
|
530 |
+
|
531 |
+
#Dirctory loader for loading the text data only to specific db
|
532 |
+
'''
|
533 |
+
loader = DirectoryLoader(data_path, glob="*.*")
|
534 |
+
documents = loader.load()
|
535 |
+
|
536 |
+
# update the metadata adding filname to the met
|
537 |
+
for doc in documents:
|
538 |
+
unique_id = str(uuid.uuid4())
|
539 |
+
doc.id = unique_id
|
540 |
+
path=doc.metadata.get("source")
|
541 |
+
match = re.search(r'([^\\]+\.[^\\]+)$', path)
|
542 |
+
doc.metadata.update({"filename":match.group(1)})
|
543 |
+
return documents,
|
544 |
+
'''
|
545 |
+
return grouped_documents
|
546 |
+
#documents,processed_documents,table_document = load_document(data_path)
|
547 |
+
|
548 |
+
|
549 |
+
########################################################################################################################################################
|
550 |
+
####-------------------------------------------------------------- Chunking the Text --------------------------------------------------------------####
|
551 |
+
########################################################################################################################################################
|
552 |
+
|
553 |
+
def split_text(documents: list[Document]):
|
554 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
555 |
+
chunk_size=1000,
|
556 |
+
chunk_overlap=500,
|
557 |
+
length_function=len,
|
558 |
+
add_start_index=True,
|
559 |
+
)
|
560 |
+
chunks = text_splitter.split_documents(documents) # splitting the document into chunks
|
561 |
+
for index in chunks:
|
562 |
+
index.metadata["start_index"]=str(index.metadata["start_index"]) # the converstion of int metadata to str was done to store it in sqlite3
|
563 |
+
print(f"Split {len(documents)} documents into {len(chunks)} chunks.")
|
564 |
+
return chunks
|
565 |
+
|
566 |
+
########################################################################################################################################################
|
567 |
+
####---------------------------------------------------- Creating and Storeing Data in Vector DB --------------------------------------------------####
|
568 |
+
########################################################################################################################################################
|
569 |
+
|
570 |
+
#def save_to_chroma(chunks: list[Document], name: str, tables: list[Document]):
|
571 |
+
def save_to_chroma(chunks: list[Document], name: str):
|
572 |
+
CHROMA_PATH = f"./VectorDB/chroma_{name}"
|
573 |
+
#TABLE_PATH = f"./TableDB/chroma_{name}"
|
574 |
+
if os.path.exists(CHROMA_PATH):
|
575 |
+
shutil.rmtree(CHROMA_PATH)
|
576 |
+
# if os.path.exists(TABLE_PATH):
|
577 |
+
# shutil.rmtree(TABLE_PATH)
|
578 |
+
|
579 |
+
try:
|
580 |
+
# Load the embedding model
|
581 |
+
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
582 |
+
#embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
583 |
+
# Create Chroma DB for documents using from_documents [NOTE: Some of the data is converted to string because int and float show null if added]
|
584 |
+
print("Creating document vector database...")
|
585 |
+
db = Chroma.from_documents(
|
586 |
+
documents=chunks,
|
587 |
+
embedding=embedding_function,
|
588 |
+
persist_directory=CHROMA_PATH,
|
589 |
+
)
|
590 |
+
print("Document database successfully saved.")
|
591 |
+
|
592 |
+
# # Create Chroma DB for tables if available [NOTE: Some of the data is converted to string because int and float show null if added]
|
593 |
+
# if tables:
|
594 |
+
# print("Creating table vector database...")
|
595 |
+
# tdb = Chroma.from_documents(
|
596 |
+
# documents=tables,
|
597 |
+
# embedding=embedding_function,
|
598 |
+
# persist_directory=TABLE_PATH,
|
599 |
+
# )
|
600 |
+
# print("Table database successfully saved.")
|
601 |
+
# else:
|
602 |
+
# tdb = None
|
603 |
+
|
604 |
+
#return db, tdb
|
605 |
+
return db
|
606 |
+
|
607 |
+
except Exception as e:
|
608 |
+
print("Error while saving to Chroma:", e)
|
609 |
+
return None
|
610 |
+
|
611 |
+
# def get_unique_sources(chroma_path):
|
612 |
+
# db = Chroma(persist_directory=chroma_path)
|
613 |
+
# metadata_list = db.get()["metadatas"]
|
614 |
+
# unique_sources = {metadata["source"] for metadata in metadata_list if "source" in metadata}
|
615 |
+
# return list(unique_sources)
|
616 |
+
|
617 |
+
########################################################################################################################################################
|
618 |
+
####----------------------------------------------------------- Updating Existing Data in Vector DB -----------------------------------------------####
|
619 |
+
########################################################################################################################################################
|
620 |
+
|
621 |
+
# def add_document_to_existing_db(new_documents: list[Document], db_name: str):
|
622 |
+
# CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
|
623 |
+
|
624 |
+
# if not os.path.exists(CHROMA_PATH):
|
625 |
+
# print(f"Database '{db_name}' does not exist. Please create it first.")
|
626 |
+
# return
|
627 |
+
|
628 |
+
# try:
|
629 |
+
# embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
630 |
+
# #embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
631 |
+
# db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
632 |
+
|
633 |
+
# print("Adding new documents to the existing database...")
|
634 |
+
# chunks = split_text(new_documents)
|
635 |
+
# db.add_documents(chunks)
|
636 |
+
# db.persist()
|
637 |
+
# print("New documents added and database updated successfully.")
|
638 |
+
# except Exception as e:
|
639 |
+
# print("Error while adding documents to existing database:", e)
|
640 |
+
|
641 |
+
# def delete_chunks_by_source(chroma_path, source_to_delete):
|
642 |
+
# if not os.path.exists(chroma_path):
|
643 |
+
# print(f"Database at path '{chroma_path}' does not exist.")
|
644 |
+
# return
|
645 |
+
|
646 |
+
# try:
|
647 |
+
# #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
648 |
+
# embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
649 |
+
# db = Chroma(persist_directory=chroma_path, embedding_function=embedding_function)
|
650 |
+
|
651 |
+
# print(f"Retrieving all metadata to identify chunks with source '{source_to_delete}'...")
|
652 |
+
# metadata_list = db.get()["metadatas"]
|
653 |
+
|
654 |
+
# # Identify indices of chunks to delete
|
655 |
+
# indices_to_delete = [
|
656 |
+
# idx for idx, metadata in enumerate(metadata_list) if metadata.get("source") == source_to_delete
|
657 |
+
# ]
|
658 |
+
|
659 |
+
# if not indices_to_delete:
|
660 |
+
# print(f"No chunks found with source '{source_to_delete}'.")
|
661 |
+
# return
|
662 |
+
|
663 |
+
# print(f"Deleting {len(indices_to_delete)} chunks with source '{source_to_delete}'...")
|
664 |
+
# db.delete(indices=indices_to_delete)
|
665 |
+
# db.persist()
|
666 |
+
# print("Chunks deleted and database updated successfully.")
|
667 |
+
# except Exception as e:
|
668 |
+
# print(f"Error while deleting chunks by source: {e}")
|
669 |
+
|
670 |
+
# # update a data store
|
671 |
+
# def update_data_store(file_path, db_name):
|
672 |
+
# CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
|
673 |
+
# print(f"Filepath ===> {file_path} DB Name ====> {db_name}")
|
674 |
+
|
675 |
+
# try:
|
676 |
+
# documents,table_document = load_document(file_path)
|
677 |
+
# print("Documents loaded successfully.")
|
678 |
+
# except Exception as e:
|
679 |
+
# print(f"Error loading documents: {e}")
|
680 |
+
# return
|
681 |
+
|
682 |
+
# try:
|
683 |
+
# chunks = split_text(documents)
|
684 |
+
# print(f"Text split into {len(chunks)} chunks.")
|
685 |
+
# except Exception as e:
|
686 |
+
# print(f"Error splitting text: {e}")
|
687 |
+
# return
|
688 |
+
|
689 |
+
# try:
|
690 |
+
# asyncio.run(save_to_chroma(save_to_chroma(chunks, db_name, table_document)))
|
691 |
+
# print(f"Data saved to Chroma for database {db_name}.")
|
692 |
+
# except Exception as e:
|
693 |
+
# print(f"Error saving to Chroma: {e}")
|
694 |
+
# return
|
695 |
+
|
696 |
+
########################################################################################################################################################
|
697 |
+
####------------------------------------------------------- Combine Process of Load, Chunk and Store ----------------------------------------------####
|
698 |
+
########################################################################################################################################################
|
699 |
+
|
700 |
+
def generate_data_store(file_path, db_name):
|
701 |
+
CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
|
702 |
+
print(f"Filepath ===> {file_path} DB Name ====> {db_name}")
|
703 |
+
|
704 |
+
try:
|
705 |
+
#documents,grouped_documents = load_document(file_path)
|
706 |
+
grouped_documents = load_document(file_path)
|
707 |
+
print("Documents loaded successfully.")
|
708 |
+
except Exception as e:
|
709 |
+
print(f"Error loading documents: {e}")
|
710 |
+
return
|
711 |
+
|
712 |
+
try:
|
713 |
+
chunks = split_text(grouped_documents)
|
714 |
+
print(f"Text split into {len(chunks)} chunks.")
|
715 |
+
except Exception as e:
|
716 |
+
print(f"Error splitting text: {e}")
|
717 |
+
return
|
718 |
+
|
719 |
+
try:
|
720 |
+
#asyncio.run(save_to_chroma(save_to_chroma(chunks, db_name, table_document)))
|
721 |
+
asyncio.run(save_to_chroma(chunks, db_name))
|
722 |
+
print(f"Data saved to Chroma for database {db_name}.")
|
723 |
+
except Exception as e:
|
724 |
+
print(f"Error saving to Chroma: {e}")
|
725 |
+
return
|
726 |
|