WebashalarForML commited on
Commit
1203483
·
verified ·
1 Parent(s): a6b6b45

Create N.TXT

Browse files
Files changed (1) hide show
  1. N.TXT +299 -0
N.TXT ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, render_template, request, redirect, url_for, session
2
+ import os
3
+ from werkzeug.utils import secure_filename
4
+ #from retrival import generate_data_store
5
+ from retrival import generate_data_store #,add_document_to_existing_db, delete_chunks_by_source
6
+ from langchain_community.vectorstores import Chroma
7
+ from langchain.embeddings import HuggingFaceEmbeddings
8
+ from langchain.prompts import ChatPromptTemplate
9
+ from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
10
+ from langchain_huggingface import HuggingFaceEndpoint
11
+ from huggingface_hub import InferenceClient
12
+ from langchain.schema import Document
13
+ from langchain_core.documents import Document
14
+ from dotenv import load_dotenv
15
+ import re
16
+ import glob
17
+ import shutil
18
+ from werkzeug.utils import secure_filename
19
+ import asyncio
20
+
21
+ import nltk
22
+ nltk.download('punkt_tab')
23
+
24
+ import nltk
25
+ nltk.download('averaged_perceptron_tagger_eng')
26
+
27
+ app = Flask(__name__)
28
+
29
+ # Set the secret key for session management
30
+ app.secret_key = os.urandom(24)
31
+
32
+ # Configurations
33
+ UPLOAD_FOLDER = "uploads/"
34
+ VECTOR_DB_FOLDER = "VectorDB/"
35
+ #TABLE_DB_FOLDER = "TableDB/"
36
+
37
+ app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
38
+
39
+ os.makedirs(UPLOAD_FOLDER, exist_ok=True)
40
+ os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
41
+ #os.makedirs(TABLE_DB_FOLDER, exist_ok=True)
42
+
43
+ # Global variables
44
+ CHROMA_PATH = None
45
+ TEMP_PATH = None
46
+ #TABLE_PATH = None
47
+
48
+ #System prompt
49
+
50
+ '''PROMPT_TEMPLATE = """
51
+ You are working with a retrieval-augmented generation (RAG) setup. Your task is to generate a response based on the context provided and the question asked. Consider only the following context strictly, and use it to answer the question. If the question cannot be answered using the context, respond with: "The information requested is not mentioned in the context."
52
+
53
+ Context:
54
+ {context}
55
+
56
+ ---
57
+
58
+ Question:
59
+ {question}
60
+
61
+ Response:
62
+ """
63
+ '''
64
+
65
+ PROMPT_TEMPLATE = """
66
+ You are working as a retrieval-augmented generation (RAG) assistant specializing in providing precise and accurate responses. Generate a response based only on the provided context and question, following these concrete instructions:
67
+
68
+ - **Adhere strictly to the context:** Use only the information in the context to answer the question. Do not add any external details or assumptions.
69
+ - **Handle multiple chunks:** The context is divided into chunks, separated by "###". Query-related information may be present in any chunk.
70
+ - **Focus on relevance:** Identify and prioritize chunks relevant to the question while ignoring unrelated chunks.
71
+ - **Answer concisely and factually:** Provide clear, direct, and structured responses based on the retrieved information.
72
+
73
+ Context:
74
+ {context}
75
+
76
+ ---
77
+
78
+ Question:
79
+ {question}
80
+
81
+ Response:
82
+ """
83
+
84
+ #HFT = os.getenv('HF_TOKEN')
85
+ #client = InferenceClient(api_key=HFT)
86
+
87
+ @app.route('/', methods=['GET'])
88
+ def home():
89
+ return render_template('home.html')
90
+
91
+ @app.route('/chat', methods=['GET', 'POST'])
92
+ def chat():
93
+
94
+ if 'history' not in session:
95
+ session['history'] = []
96
+ print("sessionhist1",session['history'])
97
+
98
+ global CHROMA_PATH
99
+ #global TABLE_PATH
100
+
101
+ #old_db = session.get('old_db', None)
102
+ #print(f"Selected DB: {CHROMA_PATH}")
103
+
104
+ #if TEMP_PATH is not None and TEMP_PATH != CHROMA_PATH:
105
+ # session['history'] = []
106
+ #TEMP_PATH = CHROMA_PATH
107
+
108
+ if request.method == 'POST':
109
+ query_text = request.form['query_text']
110
+ if CHROMA_PATH is None:
111
+ return render_template('chat.html', error="No vector database selected!", history=[])
112
+
113
+ # Load the selected Document Database
114
+ embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
115
+ #embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
116
+ db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
117
+ results_document = db.similarity_search_with_relevance_scores(query_text, k=3)
118
+
119
+ print("results------------------->",results_document)
120
+ context_text_document = "\n\n---\n\n".join([doc.page_content for doc, _score in results_document])
121
+
122
+
123
+ # # Load the selected Table Database
124
+ # #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
125
+ # embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
126
+ # tdb = Chroma(persist_directory=TABLE_PATH, embedding_function=embedding_function)
127
+ # results_table = tdb.similarity_search_with_relevance_scores(query_text, k=2)
128
+
129
+ # print("results------------------->",results_table)
130
+ # context_text_table = "\n\n---\n\n".join([doc.page_content for doc, _score in results_table])
131
+
132
+ # Prepare the prompt and query the model
133
+ prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
134
+ prompt = prompt_template.format(context=context_text_document,question=query_text)
135
+ #prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text)
136
+ print("results------------------->",prompt)
137
+
138
+
139
+ #Model Defining and its use
140
+ repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
141
+ HFT = os.environ["HF_TOKEN"]
142
+ llm = HuggingFaceEndpoint(
143
+ repo_id=repo_id,
144
+ max_tokens=3000,
145
+ temperature=0.8,
146
+ huggingfacehub_api_token=HFT,
147
+ )
148
+
149
+ data= llm(prompt)
150
+ #data = response.choices[0].message.content
151
+ print("LLM response------------------>",data)
152
+ # filtering the uneccessary context.
153
+ if re.search(r'\bmention\b|\bnot mention\b|\bnot mentioned\b|\bnot contain\b|\bnot include\b|\bnot provide\b|\bdoes not\b|\bnot explicitly\b|\bnot explicitly mentioned\b', data, re.IGNORECASE):
154
+ data = "We do not have information related to your query on our end."
155
+
156
+ # Save the query and answer to the session history
157
+ session['history'].append((query_text, data))
158
+
159
+ # Mark the session as modified to ensure it gets saved
160
+ session.modified = True
161
+ print("sessionhist2",session['history'])
162
+
163
+ return render_template('chat.html', query_text=query_text, answer=data, history=session['history'])
164
+
165
+ return render_template('chat.html', history=session['history'])
166
+
167
+ '''
168
+ @app.route('/create-db', methods=['GET', 'POST'])
169
+ def create_db():
170
+ if request.method == 'POST':
171
+ db_name = request.form['db_name']
172
+
173
+ # Get all files from the uploaded folder
174
+ files = request.files.getlist('folder')
175
+ if not files:
176
+ return "No files uploaded", 400
177
+
178
+ # if not exist
179
+ os.makedirs(UPLOAD_FOLDER, exist_ok=True)
180
+ # Define the base upload path
181
+ upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name))
182
+ #upload_base_path = upload_base_path.replace("\\", "/")
183
+ print(f"Base Upload Path: {upload_base_path}")
184
+ os.makedirs(upload_base_path, exist_ok=True)
185
+
186
+ # Save each file and recreate folder structure
187
+ for file in files:
188
+ print("file , files",files,file)
189
+ #relative_path = file.filename # This should contain the subfolder structure
190
+ file_path = os.path.join(upload_base_path)
191
+ #file_path = file_path.replace("\\", "/")
192
+
193
+ # Ensure the directory exists before saving the file
194
+ print(f"Saving to: {file_path}")
195
+ os.makedirs(os.path.dirname(file_path), exist_ok=True)
196
+
197
+
198
+ # Get the file path and save it
199
+ file_path = os.path.join(upload_base_path, secure_filename(file.filename))
200
+ file.save(file_path)
201
+
202
+ # Generate datastore
203
+ generate_data_store(upload_base_path, db_name)
204
+
205
+ # # Clean up uploaded files (if needed)
206
+ #if os.path.exists(app.config['UPLOAD_FOLDER']):
207
+ # shutil.rmtree(app.config['UPLOAD_FOLDER'])
208
+
209
+ return redirect(url_for('list_dbs'))
210
+
211
+ return render_template('create_db.html')
212
+ '''
213
+ @app.route('/create-db', methods=['GET', 'POST'])
214
+ def create_db():
215
+ if request.method == 'POST':
216
+ db_name = request.form['db_name']
217
+
218
+ # Ensure the upload folder exists
219
+ os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
220
+
221
+ # Define the base upload path
222
+ upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name))
223
+ os.makedirs(upload_base_path, exist_ok=True)
224
+
225
+ # Check for uploaded folder or files
226
+ folder_files = request.files.getlist('folder')
227
+ single_files = request.files.getlist('file')
228
+
229
+ if folder_files and any(file.filename for file in folder_files):
230
+ # Process folder files
231
+ for file in folder_files:
232
+ file_path = os.path.join(upload_base_path, secure_filename(file.filename))
233
+ os.makedirs(os.path.dirname(file_path), exist_ok=True)
234
+ file.save(file_path)
235
+
236
+ elif single_files and any(file.filename for file in single_files):
237
+ # Process single files
238
+ for file in single_files:
239
+ file_path = os.path.join(upload_base_path, secure_filename(file.filename))
240
+ file.save(file_path)
241
+
242
+ else:
243
+ return "No files uploaded", 400
244
+
245
+ # Generate datastore
246
+ generate_data_store(upload_base_path, db_name)
247
+
248
+ return redirect(url_for('list_dbs'))
249
+
250
+ return render_template('create_db.html')
251
+
252
+ @app.route('/list-dbs', methods=['GET'])
253
+ def list_dbs():
254
+ vector_dbs = [name for name in os.listdir(VECTOR_DB_FOLDER) if os.path.isdir(os.path.join(VECTOR_DB_FOLDER, name))]
255
+ return render_template('list_dbs.html', vector_dbs=vector_dbs)
256
+
257
+ @app.route('/select-db/<db_name>', methods=['POST'])
258
+ def select_db(db_name):
259
+
260
+ #Selecting the Documnet Vector DB
261
+ global CHROMA_PATH
262
+ print(f"Selected DB: {CHROMA_PATH}")
263
+ CHROMA_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
264
+ CHROMA_PATH = CHROMA_PATH.replace("\\", "/")
265
+ print(f"Selected DB: {CHROMA_PATH}")
266
+
267
+ #Selecting the Table Vector DB
268
+ # global TABLE_PATH
269
+ # print(f"Selected DB: {TABLE_PATH}")
270
+ # TABLE_PATH = os.path.join(TABLE_DB_FOLDER, db_name)
271
+ # TABLE_PATH = TABLE_PATH.replace("\\", "/")
272
+ # print(f"Selected DB: {TABLE_PATH}")
273
+
274
+
275
+ return redirect(url_for('chat'))
276
+
277
+ @app.route('/update-dbs/<db_name>', methods=['GET','POST'])
278
+ def update_db(db_name):
279
+ if request.method == 'POST':
280
+ db_name = request.form['db_name']
281
+
282
+ # Get all files from the uploaded folder
283
+ files = request.files.getlist('folder')
284
+ if not files:
285
+ return "No files uploaded", 400
286
+ print(f"Selected DB: {db_name}")
287
+ DB_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
288
+ DB_PATH = DB_PATH.replace("\\", "/")
289
+ print(f"Selected DB: {DB_PATH}")
290
+
291
+ generate_data_store(DB_PATH, db_name)
292
+
293
+ return redirect(url_for('list_dbs'))
294
+ return render_template('update_db.html')
295
+
296
+ if __name__ == "__main__":
297
+ app.run(debug=False, use_reloader=False)
298
+
299
+