Spaces:
Running
Running
Create N.TXT
Browse files
N.TXT
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request, redirect, url_for, session
|
2 |
+
import os
|
3 |
+
from werkzeug.utils import secure_filename
|
4 |
+
#from retrival import generate_data_store
|
5 |
+
from retrival import generate_data_store #,add_document_to_existing_db, delete_chunks_by_source
|
6 |
+
from langchain_community.vectorstores import Chroma
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.prompts import ChatPromptTemplate
|
9 |
+
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
|
10 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
11 |
+
from huggingface_hub import InferenceClient
|
12 |
+
from langchain.schema import Document
|
13 |
+
from langchain_core.documents import Document
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
import re
|
16 |
+
import glob
|
17 |
+
import shutil
|
18 |
+
from werkzeug.utils import secure_filename
|
19 |
+
import asyncio
|
20 |
+
|
21 |
+
import nltk
|
22 |
+
nltk.download('punkt_tab')
|
23 |
+
|
24 |
+
import nltk
|
25 |
+
nltk.download('averaged_perceptron_tagger_eng')
|
26 |
+
|
27 |
+
app = Flask(__name__)
|
28 |
+
|
29 |
+
# Set the secret key for session management
|
30 |
+
app.secret_key = os.urandom(24)
|
31 |
+
|
32 |
+
# Configurations
|
33 |
+
UPLOAD_FOLDER = "uploads/"
|
34 |
+
VECTOR_DB_FOLDER = "VectorDB/"
|
35 |
+
#TABLE_DB_FOLDER = "TableDB/"
|
36 |
+
|
37 |
+
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
38 |
+
|
39 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
40 |
+
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
|
41 |
+
#os.makedirs(TABLE_DB_FOLDER, exist_ok=True)
|
42 |
+
|
43 |
+
# Global variables
|
44 |
+
CHROMA_PATH = None
|
45 |
+
TEMP_PATH = None
|
46 |
+
#TABLE_PATH = None
|
47 |
+
|
48 |
+
#System prompt
|
49 |
+
|
50 |
+
'''PROMPT_TEMPLATE = """
|
51 |
+
You are working with a retrieval-augmented generation (RAG) setup. Your task is to generate a response based on the context provided and the question asked. Consider only the following context strictly, and use it to answer the question. If the question cannot be answered using the context, respond with: "The information requested is not mentioned in the context."
|
52 |
+
|
53 |
+
Context:
|
54 |
+
{context}
|
55 |
+
|
56 |
+
---
|
57 |
+
|
58 |
+
Question:
|
59 |
+
{question}
|
60 |
+
|
61 |
+
Response:
|
62 |
+
"""
|
63 |
+
'''
|
64 |
+
|
65 |
+
PROMPT_TEMPLATE = """
|
66 |
+
You are working as a retrieval-augmented generation (RAG) assistant specializing in providing precise and accurate responses. Generate a response based only on the provided context and question, following these concrete instructions:
|
67 |
+
|
68 |
+
- **Adhere strictly to the context:** Use only the information in the context to answer the question. Do not add any external details or assumptions.
|
69 |
+
- **Handle multiple chunks:** The context is divided into chunks, separated by "###". Query-related information may be present in any chunk.
|
70 |
+
- **Focus on relevance:** Identify and prioritize chunks relevant to the question while ignoring unrelated chunks.
|
71 |
+
- **Answer concisely and factually:** Provide clear, direct, and structured responses based on the retrieved information.
|
72 |
+
|
73 |
+
Context:
|
74 |
+
{context}
|
75 |
+
|
76 |
+
---
|
77 |
+
|
78 |
+
Question:
|
79 |
+
{question}
|
80 |
+
|
81 |
+
Response:
|
82 |
+
"""
|
83 |
+
|
84 |
+
#HFT = os.getenv('HF_TOKEN')
|
85 |
+
#client = InferenceClient(api_key=HFT)
|
86 |
+
|
87 |
+
@app.route('/', methods=['GET'])
|
88 |
+
def home():
|
89 |
+
return render_template('home.html')
|
90 |
+
|
91 |
+
@app.route('/chat', methods=['GET', 'POST'])
|
92 |
+
def chat():
|
93 |
+
|
94 |
+
if 'history' not in session:
|
95 |
+
session['history'] = []
|
96 |
+
print("sessionhist1",session['history'])
|
97 |
+
|
98 |
+
global CHROMA_PATH
|
99 |
+
#global TABLE_PATH
|
100 |
+
|
101 |
+
#old_db = session.get('old_db', None)
|
102 |
+
#print(f"Selected DB: {CHROMA_PATH}")
|
103 |
+
|
104 |
+
#if TEMP_PATH is not None and TEMP_PATH != CHROMA_PATH:
|
105 |
+
# session['history'] = []
|
106 |
+
#TEMP_PATH = CHROMA_PATH
|
107 |
+
|
108 |
+
if request.method == 'POST':
|
109 |
+
query_text = request.form['query_text']
|
110 |
+
if CHROMA_PATH is None:
|
111 |
+
return render_template('chat.html', error="No vector database selected!", history=[])
|
112 |
+
|
113 |
+
# Load the selected Document Database
|
114 |
+
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
115 |
+
#embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
116 |
+
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
117 |
+
results_document = db.similarity_search_with_relevance_scores(query_text, k=3)
|
118 |
+
|
119 |
+
print("results------------------->",results_document)
|
120 |
+
context_text_document = "\n\n---\n\n".join([doc.page_content for doc, _score in results_document])
|
121 |
+
|
122 |
+
|
123 |
+
# # Load the selected Table Database
|
124 |
+
# #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
125 |
+
# embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
126 |
+
# tdb = Chroma(persist_directory=TABLE_PATH, embedding_function=embedding_function)
|
127 |
+
# results_table = tdb.similarity_search_with_relevance_scores(query_text, k=2)
|
128 |
+
|
129 |
+
# print("results------------------->",results_table)
|
130 |
+
# context_text_table = "\n\n---\n\n".join([doc.page_content for doc, _score in results_table])
|
131 |
+
|
132 |
+
# Prepare the prompt and query the model
|
133 |
+
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
|
134 |
+
prompt = prompt_template.format(context=context_text_document,question=query_text)
|
135 |
+
#prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text)
|
136 |
+
print("results------------------->",prompt)
|
137 |
+
|
138 |
+
|
139 |
+
#Model Defining and its use
|
140 |
+
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
141 |
+
HFT = os.environ["HF_TOKEN"]
|
142 |
+
llm = HuggingFaceEndpoint(
|
143 |
+
repo_id=repo_id,
|
144 |
+
max_tokens=3000,
|
145 |
+
temperature=0.8,
|
146 |
+
huggingfacehub_api_token=HFT,
|
147 |
+
)
|
148 |
+
|
149 |
+
data= llm(prompt)
|
150 |
+
#data = response.choices[0].message.content
|
151 |
+
print("LLM response------------------>",data)
|
152 |
+
# filtering the uneccessary context.
|
153 |
+
if re.search(r'\bmention\b|\bnot mention\b|\bnot mentioned\b|\bnot contain\b|\bnot include\b|\bnot provide\b|\bdoes not\b|\bnot explicitly\b|\bnot explicitly mentioned\b', data, re.IGNORECASE):
|
154 |
+
data = "We do not have information related to your query on our end."
|
155 |
+
|
156 |
+
# Save the query and answer to the session history
|
157 |
+
session['history'].append((query_text, data))
|
158 |
+
|
159 |
+
# Mark the session as modified to ensure it gets saved
|
160 |
+
session.modified = True
|
161 |
+
print("sessionhist2",session['history'])
|
162 |
+
|
163 |
+
return render_template('chat.html', query_text=query_text, answer=data, history=session['history'])
|
164 |
+
|
165 |
+
return render_template('chat.html', history=session['history'])
|
166 |
+
|
167 |
+
'''
|
168 |
+
@app.route('/create-db', methods=['GET', 'POST'])
|
169 |
+
def create_db():
|
170 |
+
if request.method == 'POST':
|
171 |
+
db_name = request.form['db_name']
|
172 |
+
|
173 |
+
# Get all files from the uploaded folder
|
174 |
+
files = request.files.getlist('folder')
|
175 |
+
if not files:
|
176 |
+
return "No files uploaded", 400
|
177 |
+
|
178 |
+
# if not exist
|
179 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
180 |
+
# Define the base upload path
|
181 |
+
upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name))
|
182 |
+
#upload_base_path = upload_base_path.replace("\\", "/")
|
183 |
+
print(f"Base Upload Path: {upload_base_path}")
|
184 |
+
os.makedirs(upload_base_path, exist_ok=True)
|
185 |
+
|
186 |
+
# Save each file and recreate folder structure
|
187 |
+
for file in files:
|
188 |
+
print("file , files",files,file)
|
189 |
+
#relative_path = file.filename # This should contain the subfolder structure
|
190 |
+
file_path = os.path.join(upload_base_path)
|
191 |
+
#file_path = file_path.replace("\\", "/")
|
192 |
+
|
193 |
+
# Ensure the directory exists before saving the file
|
194 |
+
print(f"Saving to: {file_path}")
|
195 |
+
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
196 |
+
|
197 |
+
|
198 |
+
# Get the file path and save it
|
199 |
+
file_path = os.path.join(upload_base_path, secure_filename(file.filename))
|
200 |
+
file.save(file_path)
|
201 |
+
|
202 |
+
# Generate datastore
|
203 |
+
generate_data_store(upload_base_path, db_name)
|
204 |
+
|
205 |
+
# # Clean up uploaded files (if needed)
|
206 |
+
#if os.path.exists(app.config['UPLOAD_FOLDER']):
|
207 |
+
# shutil.rmtree(app.config['UPLOAD_FOLDER'])
|
208 |
+
|
209 |
+
return redirect(url_for('list_dbs'))
|
210 |
+
|
211 |
+
return render_template('create_db.html')
|
212 |
+
'''
|
213 |
+
@app.route('/create-db', methods=['GET', 'POST'])
|
214 |
+
def create_db():
|
215 |
+
if request.method == 'POST':
|
216 |
+
db_name = request.form['db_name']
|
217 |
+
|
218 |
+
# Ensure the upload folder exists
|
219 |
+
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
220 |
+
|
221 |
+
# Define the base upload path
|
222 |
+
upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name))
|
223 |
+
os.makedirs(upload_base_path, exist_ok=True)
|
224 |
+
|
225 |
+
# Check for uploaded folder or files
|
226 |
+
folder_files = request.files.getlist('folder')
|
227 |
+
single_files = request.files.getlist('file')
|
228 |
+
|
229 |
+
if folder_files and any(file.filename for file in folder_files):
|
230 |
+
# Process folder files
|
231 |
+
for file in folder_files:
|
232 |
+
file_path = os.path.join(upload_base_path, secure_filename(file.filename))
|
233 |
+
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
234 |
+
file.save(file_path)
|
235 |
+
|
236 |
+
elif single_files and any(file.filename for file in single_files):
|
237 |
+
# Process single files
|
238 |
+
for file in single_files:
|
239 |
+
file_path = os.path.join(upload_base_path, secure_filename(file.filename))
|
240 |
+
file.save(file_path)
|
241 |
+
|
242 |
+
else:
|
243 |
+
return "No files uploaded", 400
|
244 |
+
|
245 |
+
# Generate datastore
|
246 |
+
generate_data_store(upload_base_path, db_name)
|
247 |
+
|
248 |
+
return redirect(url_for('list_dbs'))
|
249 |
+
|
250 |
+
return render_template('create_db.html')
|
251 |
+
|
252 |
+
@app.route('/list-dbs', methods=['GET'])
|
253 |
+
def list_dbs():
|
254 |
+
vector_dbs = [name for name in os.listdir(VECTOR_DB_FOLDER) if os.path.isdir(os.path.join(VECTOR_DB_FOLDER, name))]
|
255 |
+
return render_template('list_dbs.html', vector_dbs=vector_dbs)
|
256 |
+
|
257 |
+
@app.route('/select-db/<db_name>', methods=['POST'])
|
258 |
+
def select_db(db_name):
|
259 |
+
|
260 |
+
#Selecting the Documnet Vector DB
|
261 |
+
global CHROMA_PATH
|
262 |
+
print(f"Selected DB: {CHROMA_PATH}")
|
263 |
+
CHROMA_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
|
264 |
+
CHROMA_PATH = CHROMA_PATH.replace("\\", "/")
|
265 |
+
print(f"Selected DB: {CHROMA_PATH}")
|
266 |
+
|
267 |
+
#Selecting the Table Vector DB
|
268 |
+
# global TABLE_PATH
|
269 |
+
# print(f"Selected DB: {TABLE_PATH}")
|
270 |
+
# TABLE_PATH = os.path.join(TABLE_DB_FOLDER, db_name)
|
271 |
+
# TABLE_PATH = TABLE_PATH.replace("\\", "/")
|
272 |
+
# print(f"Selected DB: {TABLE_PATH}")
|
273 |
+
|
274 |
+
|
275 |
+
return redirect(url_for('chat'))
|
276 |
+
|
277 |
+
@app.route('/update-dbs/<db_name>', methods=['GET','POST'])
|
278 |
+
def update_db(db_name):
|
279 |
+
if request.method == 'POST':
|
280 |
+
db_name = request.form['db_name']
|
281 |
+
|
282 |
+
# Get all files from the uploaded folder
|
283 |
+
files = request.files.getlist('folder')
|
284 |
+
if not files:
|
285 |
+
return "No files uploaded", 400
|
286 |
+
print(f"Selected DB: {db_name}")
|
287 |
+
DB_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
|
288 |
+
DB_PATH = DB_PATH.replace("\\", "/")
|
289 |
+
print(f"Selected DB: {DB_PATH}")
|
290 |
+
|
291 |
+
generate_data_store(DB_PATH, db_name)
|
292 |
+
|
293 |
+
return redirect(url_for('list_dbs'))
|
294 |
+
return render_template('update_db.html')
|
295 |
+
|
296 |
+
if __name__ == "__main__":
|
297 |
+
app.run(debug=False, use_reloader=False)
|
298 |
+
|
299 |
+
|