File size: 6,645 Bytes
bec7b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f539389
bee746c
bec7b04
bee746c
bec7b04
 
f539389
bec7b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f2ba2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from flask import Flask, render_template, request, redirect, url_for, session
import os
from werkzeug.utils import secure_filename
from retrival import generate_data_store
from langchain_community.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from huggingface_hub import InferenceClient
from langchain.schema import Document 
from langchain_core.documents import Document
from dotenv import load_dotenv
import re
import glob
import shutil
from werkzeug.utils import secure_filename

app = Flask(__name__)

# Set the secret key for session management
app.secret_key = os.urandom(24)

# Configurations
UPLOAD_FOLDER = "uploads/"
VECTOR_DB_FOLDER = "VectorDB/"
NLTK_FOLDER = "nltk_data/"

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
os.environ["MPLCONFIGDIR"] = "/tmp"
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
os.makedirs(NLTK_FOLDER, exist_ok=True)

# Global variables
CHROMA_PATH = None
PROMPT_TEMPLATE = """
You are working with a retrieval-augmented generation (RAG) setup. Your task is to generate a response based on the context provided and the question asked. Consider only the following context strictly, and use it to answer the question. Do not include any external information.

Context:
{context}

---

Question:
{question}

Response:
"""
HFT = os.getenv('HF_TOKEN')
client = InferenceClient(api_key=HFT)

@app.route('/', methods=['GET'])
def home():
    return render_template('home.html')

@app.route('/chat', methods=['GET', 'POST'])
def chat():
    
    if 'history' not in session:
        session['history'] = []
    print("sessionhist1",session['history'])
    
    global CHROMA_PATH
    old_db = session.get('old_db', None) 
    print(f"Selected DB: {CHROMA_PATH}")
    
    if old_db != None:
        if CHROMA_PATH != old_db:
            session['history'] = [] 
        
    #print("sessionhist1",session['history'])
    
    if request.method == 'POST':
        query_text = request.form['query_text']
        if CHROMA_PATH is None:
            return render_template('chat.html', error="No vector database selected!", history=[])

        # Load the selected database
        embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
        db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
        results = db.similarity_search_with_relevance_scores(query_text, k=3)        
        context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])

        # Prepare the prompt and query the model
        prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
        prompt = prompt_template.format(context=context_text, question=query_text)
        print("results------------------->",prompt)
        response = client.chat.completions.create(
            model="mistralai/Mistral-7B-Instruct-v0.3",
            messages=[{"role": "system", "content": "You are an assistant specifically designed to generate responses based on the context provided. Your task is to answer questions strictly using the context without adding any external knowledge or information. Please ensure that your responses are relevant, accurate, and based solely on the given context."},
                      {"role": "user", "content": prompt}],
            max_tokens=1000,
            temperature=0.3
        )
        data = response.choices[0].message.content

        if re.search(r'\bmention\b|\bnot mention\b|\bnot mentioned\b|\bnot contain\b|\bnot include\b|\bnot provide\b|\bdoes not\b|\bnot explicitly\b|\bnot explicitly mentioned\b', data, re.IGNORECASE):
            data = "We do not have information related to your query on our end."
            
        # Save the query and answer to the session history
        session['history'].append((query_text, data))
        
        # Mark the session as modified to ensure it gets saved
        session.modified = True
        print("sessionhist2",session['history'])

        return render_template('chat.html', query_text=query_text, answer=data, history=session['history'],old_db=CHROMA_PATH)

    return render_template('chat.html', history=session['history'], old_db=CHROMA_PATH)

@app.route('/create-db', methods=['GET', 'POST'])
def create_db():
    if request.method == 'POST':
        db_name = request.form['db_name']

        # Get all files from the uploaded folder
        files = request.files.getlist('folder')
        if not files:
            return "No files uploaded", 400

        # if not exist
        os.makedirs(UPLOAD_FOLDER, exist_ok=True)
        # Define the base upload path
        upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name))
        #upload_base_path = upload_base_path.replace("\\", "/")
        print(f"Base Upload Path: {upload_base_path}")
        os.makedirs(upload_base_path, exist_ok=True)

        # Save each file and recreate folder structure
        for file in files:
            print("file , files",files,file)
            #relative_path = file.filename  # This should contain the subfolder structure
            file_path = os.path.join(upload_base_path)
            #file_path = file_path.replace("\\", "/")

            # Ensure the directory exists before saving the file
            print(f"Saving to: {file_path}")
            os.makedirs(os.path.dirname(file_path), exist_ok=True)
            
            
            # Get the file path and save it
            file_path = os.path.join(upload_base_path, secure_filename(file.filename))
            file.save(file_path)
                    
        # Generate datastore
        generate_data_store(upload_base_path, db_name)

        # # Clean up uploaded files (if needed)
        #if os.path.exists(app.config['UPLOAD_FOLDER']):
        #    shutil.rmtree(app.config['UPLOAD_FOLDER'])

        return redirect(url_for('list_dbs'))

    return render_template('create_db.html')

@app.route('/list-dbs', methods=['GET'])
def list_dbs():
    vector_dbs = [name for name in os.listdir(VECTOR_DB_FOLDER) if os.path.isdir(os.path.join(VECTOR_DB_FOLDER, name))]
    return render_template('list_dbs.html', vector_dbs=vector_dbs)

@app.route('/select-db/<db_name>', methods=['POST'])
def select_db(db_name):
    global CHROMA_PATH
    print(f"Selected DB: {CHROMA_PATH}")
    CHROMA_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
    CHROMA_PATH = CHROMA_PATH.replace("\\", "/")
    print(f"Selected DB: {CHROMA_PATH}")
    return redirect(url_for('chat'))

if __name__ == "__main__":
    app.run(debug=False, use_reloader=False)