Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -109,72 +109,60 @@ def reset_upload():
|
|
109 |
return redirect(url_for('index'))
|
110 |
|
111 |
@app.route('/process_file/<filename>', methods=['GET', 'POST'])
|
112 |
-
def process_file(filename):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
try:
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
file_paths = [os.path.join(app.config['UPLOAD_FOLDER'], filename) for filename in uploaded_files]
|
122 |
-
logging.info(f"Processing files: {file_paths}")
|
123 |
-
|
124 |
-
extracted_text = {}
|
125 |
-
processed_Img = {}
|
126 |
-
|
127 |
-
# Try to process using the main model (Mistral 7b)
|
128 |
-
try:
|
129 |
-
extracted_text, processed_Img = extract_text_from_images(file_paths)
|
130 |
-
logging.info(f"Extracted text: {extracted_text}")
|
131 |
-
logging.info(f"Processed images: {processed_Img}")
|
132 |
-
|
133 |
#run the model code only if the text is extracted.
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
LLMdata =
|
151 |
-
|
152 |
-
logging.info(f"
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
processed_data = process_resume_data(LLMdata, cont_data, extracted_text)
|
168 |
-
logging.info(f"Processed data: {processed_data}")
|
169 |
-
|
170 |
-
# Save data in session for later use
|
171 |
-
session['processed_data'] = processed_data
|
172 |
-
session['processed_Img'] = processed_Img
|
173 |
-
|
174 |
-
print('Data processed and analyzed successfully')
|
175 |
-
logging.info("Data processed and analyzed successfully")
|
176 |
-
return redirect(url_for('result'))
|
177 |
-
|
178 |
@app.route('/result')
|
179 |
def result():
|
180 |
processed_data = session.get('processed_data', {})
|
|
|
109 |
return redirect(url_for('index'))
|
110 |
|
111 |
@app.route('/process_file/<filename>', methods=['GET', 'POST'])
|
112 |
+
def process_file(filename):
|
113 |
+
uploaded_files = session.get('uploaded_files', [])
|
114 |
+
if not uploaded_files:
|
115 |
+
print('No files selected for processing')
|
116 |
+
logging.warning("No files selected for processing")
|
117 |
+
return redirect(url_for('index'))
|
118 |
+
# Joining the base and the requested path
|
119 |
+
file_paths = [os.path.join(app.config['UPLOAD_FOLDER'], filename) for filename in uploaded_files]
|
120 |
+
logging.info(f"Processing files: {file_paths}")
|
121 |
+
extracted_text = {}
|
122 |
+
processed_Img = {}
|
123 |
+
# Try to process using the main model (Mistral 7b)
|
124 |
try:
|
125 |
+
extracted_text, processed_Img = extract_text_from_images(file_paths)
|
126 |
+
logging.info(f"Extracted text: {extracted_text}")
|
127 |
+
logging.info(f"Processed images: {processed_Img}")
|
128 |
+
#run the model code only if the text is extracted.
|
129 |
+
if extracted_text:
|
130 |
+
llmText = json_to_llm_str(extracted_text)
|
131 |
+
logging.info(f"LLM text: {llmText}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
#run the model code only if the text is extracted.
|
133 |
+
LLMdata = Data_Extractor(llmText)
|
134 |
+
print("Json Output from model------------>",LLMdata)
|
135 |
+
logging.info(f"LLM data: {LLMdata}")
|
136 |
+
else:
|
137 |
+
raise ('The text is not detected in the OCR')
|
138 |
+
except Exception as model_error:
|
139 |
+
logging.error(f"Error during LLM processing: {model_error}")
|
140 |
+
logging.info("Running backup model...")
|
141 |
+
# Use backup model in case of errors
|
142 |
+
LLMdata = {}
|
143 |
+
extracted_text, processed_Img = extract_text_from_images(file_paths)
|
144 |
+
logging.info(f"Extracted text (Backup): {extracted_text}")
|
145 |
+
logging.info(f"Processed images (Backup): {processed_Img}")
|
146 |
+
|
147 |
+
if extracted_text:
|
148 |
+
text = json_to_llm_str(extracted_text)
|
149 |
+
LLMdata = NER_Model(text)
|
150 |
+
print("Json Output from model------------>",LLMdata)
|
151 |
+
logging.info(f"NER model data: {LLMdata}")
|
152 |
+
else:
|
153 |
+
logging.warning("No extracted text available for backup model")
|
154 |
+
# Process extracted text and structure the output
|
155 |
+
cont_data = process_extracted_text(extracted_text)
|
156 |
+
logging.info(f"Contextual data: {cont_data}")
|
157 |
+
processed_data = process_resume_data(LLMdata, cont_data, extracted_text)
|
158 |
+
logging.info(f"Processed data: {processed_data}")
|
159 |
+
# Save data in session for later use
|
160 |
+
session['processed_data'] = processed_data
|
161 |
+
session['processed_Img'] = processed_Img
|
162 |
+
print('Data processed and analyzed successfully')
|
163 |
+
logging.info("Data processed and analyzed successfully")
|
164 |
+
return redirect(url_for('result'))
|
165 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
@app.route('/result')
|
167 |
def result():
|
168 |
processed_data = session.get('processed_data', {})
|