# Copyright (c) ONNX Project Contributors # SPDX-License-Identifier: Apache-2.0 import numpy as np from onnx.reference.op_run import OpRun def _argmax(data, axis=0, keepdims=True): # type: ignore result = np.argmax(data, axis=axis) if keepdims and len(result.shape) < len(data.shape): result = np.expand_dims(result, axis) return result.astype(np.int64) def _argmax_use_numpy_select_last_index(data, axis=0, keepdims=True): # type: ignore data = np.flip(data, axis) result = np.argmax(data, axis=axis) result = data.shape[axis] - result - 1 if keepdims: result = np.expand_dims(result, axis) return result.astype(np.int64) class _ArgMax(OpRun): def _run(self, data, axis=None, keepdims=None): # type: ignore return (_argmax(data, axis=axis, keepdims=keepdims),) class ArgMax_1(_ArgMax): pass class ArgMax_12(_ArgMax): def _run(self, data, axis=None, keepdims=None, select_last_index=None): # type: ignore if select_last_index == 0: # type: ignore return _ArgMax._run(self, data, axis=axis, keepdims=keepdims) return ( _argmax_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims), )