Kano001's picture
Upload 2707 files
dc2106c verified
raw
history blame
10.1 kB
// Copyright (c) ONNX Project Contributors
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include <iostream>
#include "gtest/gtest.h"
#include "onnx/checker.h"
#include "onnx/common/constants.h"
#include "onnx/defs/parser.h"
#include "onnx/defs/printer.h"
#include "onnx/defs/schema.h"
#include "onnx/inliner/inliner.h"
#include "onnx/shape_inference/implementation.h"
namespace ONNX_NAMESPACE {
namespace Test {
static void InlineFunctions(ModelProto& model, const char* input, const inliner::FunctionIdSet* to_inline = nullptr) {
OnnxParser parser(input);
auto status = parser.Parse(model);
EXPECT_TRUE(status.IsOK()) << status.ErrorMessage();
EXPECT_TRUE(parser.EndOfInput()) << "Extra unparsed input unexpected.";
checker::check_model(model, false, true);
shape_inference::InferShapes(model);
// std::cout << "Before inlining:\n" << ProtoToString(model) << "\n";
if (to_inline != nullptr)
inliner::InlineSelectedFunctions(model, *to_inline);
else
inliner::InlineLocalFunctions(model, true);
// std::cout << "After inlining:\n" << ProtoToString(model) << "\n";
// The following will ensure basic safety checks hold after inlining, including
// absence of duplicate names (multiple assignments to same name).
checker::check_model(model, true, true);
}
TEST(FunctionInliner, BasicTest) {
const char* code = R"ONNX(
<
ir_version: 8,
opset_import: [ "" : 10, "local" : 1 ]
>
agraph (float[N, 128] X, float[128,10] W, float[10] B) => (float[N, 10] C)
{
T = local.foo (X, W, B)
C = local.square(T)
}
<
opset_import: [ "" : 10 ],
domain: "local",
doc_string: "Function foo."
>
foo (x, w, b) => (c) {
T = MatMul(x, w)
S = Add(T, b)
c = Softmax(S)
}
<
opset_import: [ "" : 10 ],
domain: "local",
doc_string: "Function square."
>
square (x) => (y) {
y = Mul (x, x)
}
)ONNX";
ModelProto model;
InlineFunctions(model, code);
auto num_nodes = model.graph().node_size();
ASSERT_EQ(num_nodes, 4);
auto num_functions = model.functions_size();
ASSERT_EQ(num_functions, 0);
}
// Test that inlining processes subgraphs.
TEST(FunctionInliner, SubgraphTest) {
const char* code = R"ONNX(
<
ir_version: 8,
opset_import: [ "" : 10, "local" : 1 ]
>
agraph (bool cond, float[N] X) => (float[N] Y)
{
Y = If (cond) <
then_branch = then_graph () => (y) {
y = local.square (X)
},
else_branch = else_graph () => (y) {
y = local.square (X)
}
>
}
<
opset_import: [ "" : 10 ],
domain: "local",
doc_string: "Function square."
>
square (x) => (y) {
y = Mul (x, x)
}
)ONNX";
ModelProto model;
InlineFunctions(model, code);
auto& if_node = model.graph().node(0);
auto& graph1 = if_node.attribute(0).g();
ASSERT_EQ(graph1.node(0).op_type(), "Mul");
auto& graph2 = if_node.attribute(1).g();
ASSERT_EQ(graph2.node(0).op_type(), "Mul");
auto num_functions = model.functions_size();
ASSERT_EQ(num_functions, 0);
}
TEST(FunctionInliner, Nested) {
const char* code = R"ONNX(
<ir_version: 8, opset_import: [ "" : 17, "local" : 1 ]>
agraph (float[N] X) => (float[N] Y)
{
Y = local.foo (X)
}
<opset_import: [ "" : 17, "local" : 1 ], domain: "local">
foo (x) => (y) {
temp = Add(x, x)
y = local.bar(temp)
}
<opset_import: [ "" : 17 ], domain: "local">
bar (x) => (y) {
y = Mul (x, x)
}
)ONNX";
ModelProto model;
InlineFunctions(model, code);
auto num_nodes = model.graph().node_size();
ASSERT_EQ(num_nodes, 2);
auto num_functions = model.functions_size();
ASSERT_EQ(num_functions, 0);
}
TEST(FunctionInliner, Renaming) {
const char* code = R"ONNX(
<ir_version: 8, opset_import: [ "" : 17, "local" : 1 ]>
agraph (float[N] X) => (float[N] Y)
{
temp = local.foo (X)
temp__1 = Mul (temp, temp)
Y = Abs (temp__1)
}
<opset_import: [ "" : 17, "local" : 1 ], domain: "local">
foo (x) => (y) {
temp = Add(x, x)
y = Neg (temp)
}
)ONNX";
ModelProto model;
// Check that renaming handles accidental collision of names: when "temp" in "foo" is
// inlined, it will be renamed into something distinct from "temp" and "temp__1" as
// both these names occur in the main graph.
InlineFunctions(model, code);
}
TEST(FunctionInliner, ValueInfoPropagation) {
const char* code = R"ONNX(
<ir_version: 10, opset_import: [ "" : 17, "local" : 1 ]>
agraph (float[N] X) => (float[N] Y)
{
result = local.foo (X)
Y = Abs (result)
}
<opset_import: [ "" : 17, "local" : 1 ], domain: "local">
foo (x) => (y)
<float[N] temp> {
temp = Add(x, x)
y = Neg (temp)
}
)ONNX";
ModelProto model;
InlineFunctions(model, code);
// Check that valueinfo is propagated fron function to main graph.
auto& graph = model.graph();
auto& temp_new_name = graph.node(0).output(0);
auto& valueinfos = graph.value_info();
for (auto& valueinfo : valueinfos) {
if (valueinfo.name() == temp_new_name) {
ASSERT_TRUE(valueinfo.has_type());
ASSERT_TRUE(valueinfo.type().has_tensor_type());
ASSERT_TRUE(valueinfo.type().tensor_type().has_shape());
ASSERT_TRUE(valueinfo.type().tensor_type().shape().dim_size() == 1);
return;
}
}
ASSERT_TRUE(false) << "ValueInfo not found";
}
TEST(FunctionInliner, TwoCallsToSameFunction) {
const char* code = R"ONNX(
<ir_version: 8, opset_import: [ "" : 17, "local" : 1 ]>
agraph (float[N] X) => (float[N] Y)
{
temp = local.foo (X)
Y = local.foo (temp)
}
<opset_import: [ "" : 17, "local" : 1 ], domain: "local">
foo (x) => (y) {
temp = Add(x, x)
y = Neg (temp)
}
)ONNX";
ModelProto model;
// The call below will check that multiple assignments to same name does not happen
// after inlining two calls to same function.
InlineFunctions(model, code);
}
TEST(FunctionInliner, OpsetMismatch) {
const char* code = R"ONNX(
<ir_version: 8, opset_import: [ "" : 17, "local" : 1 ]>
agraph (float[N] X) => (float[N] Y)
{
temp = local.foo (X)
Y = local.bar (temp)
}
<opset_import: [ "" : 18], domain: "local">
foo (x) => (y) {
y = Add(x, x)
}
<opset_import: [ "" : 17], domain: "local">
bar (x) => (y) {
y = Add(x, x)
}
)ONNX";
ModelProto model;
InlineFunctions(model, code);
// The first node's call, to foo, must be inlined.
auto& first_node = model.graph().node(0);
// Check that it is a call to Add
ASSERT_EQ(first_node.op_type(), "Add");
// The second node's call, to bar, must be inlined.
auto& second_node = model.graph().node(1);
// Check that it is a call to Add
ASSERT_EQ(second_node.op_type(), "Add");
ASSERT_EQ(model.functions_size(), 0);
}
TEST(FunctionInliner, SelectiveInlining) {
const char* code = R"ONNX(
<ir_version: 8, opset_import: [ "" : 17, "local" : 1 ]>
agraph (float[N] X) => (float[N] Y)
{
temp = local.foo (X)
Y = local.bar (temp)
}
<opset_import: [ "" : 17], domain: "local">
foo (x) => (y) {
y = Add(x, x)
}
<opset_import: [ "" : 17, "local" : 1], domain: "local">
bar (x) => (y) {
y = local.foo(x)
}
)ONNX";
ModelProto model;
inliner::FunctionIdVector to_inline = {{"local", "foo"}};
auto to_inline_set = inliner::FunctionIdSet::Create(std::move(to_inline));
InlineFunctions(model, code, to_inline_set.get());
// The first node's call, to foo, must be inlined.
auto& first_node = model.graph().node(0);
// Check that it is a call to Add
ASSERT_EQ(first_node.op_type(), "Add");
// The second node's call, to bar, must not be inlined.
auto& second_node = model.graph().node(1);
// Check that it is a call to bar
ASSERT_EQ(second_node.op_type(), "bar");
// foo will be removed, bar will remain, in model.functions()
ASSERT_EQ(model.functions_size(), 1);
auto& bar_node = model.functions(0).node(0);
// Check that it is a call to Add, due to inlining
// the call to foo in bar.
ASSERT_EQ(bar_node.op_type(), "Add");
}
TEST(FunctionInliner, VersionConversion) {
const char* code = R"ONNX(
<ir_version: 8, opset_import: [ "" : 18, "local" : 1 ]>
agraph (float[N,M] X) => (float[N,M] Y)
{
Y = local.foo (X)
}
<opset_import: [ "" : 17], domain: "local">
foo (x) => (y) {
y = ReduceLogSum <axes = [0]> (x)
}
)ONNX";
ModelProto model;
InlineFunctions(model, code);
// Inlining ReduceLogSum (version 17) should convert it to ReduceLogSum (version 18)
// by promoting axes from attribute to input.
auto& node = model.graph().node(1);
ASSERT_EQ(node.op_type(), "ReduceLogSum");
ASSERT_EQ(node.input_size(), 2);
ASSERT_EQ(node.attribute_size(), 0);
}
TEST(FunctionInliner, NestedVersionConversion) {
const char* code = R"ONNX(
<ir_version: 8, opset_import: [ "" : 18, "local" : 1 ]>
agraph (float[N,M] X) => (float[N,M] Y)
{
Y = local.foo (X)
}
<opset_import: [ "" : 17, "local" : 1], domain: "local">
foo (x) => (y) {
t = ReduceLogSum <axes = [0]> (x)
y = local.bar (t)
}
<opset_import: [ "" : 17], domain: "local">
bar (x) => (y) {
y = ReduceLogSum <axes = [1]> (x)
}
)ONNX";
ModelProto model;
InlineFunctions(model, code);
// Inlining ReduceLogSum (version 17) should convert it to ReduceLogSum (version 18)
// by promoting axes from attribute to input, with a preceding Constant node for
// the axes value.
// Check that both ReduceLogSum nodes have been converted.
ASSERT_EQ(model.graph().node_size(), 4);
ASSERT_EQ(model.graph().node(0).op_type(), "Constant");
auto& node = model.graph().node(1);
ASSERT_EQ(node.op_type(), "ReduceLogSum");
ASSERT_EQ(node.input_size(), 2);
ASSERT_EQ(node.attribute_size(), 0);
ASSERT_EQ(model.graph().node(2).op_type(), "Constant");
auto node2 = model.graph().node(3);
ASSERT_EQ(node2.op_type(), "ReduceLogSum");
ASSERT_EQ(node2.input_size(), 2);
ASSERT_EQ(node2.attribute_size(), 0);
}
} // namespace Test
} // namespace ONNX_NAMESPACE