Kano001's picture
Upload 2707 files
dc2106c verified
raw
history blame
40.2 kB
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include "onnx/defs/schema.h"
namespace ONNX_NAMESPACE {
std::function<void(OpSchema&)> RNNDocGeneratorOld(const char* /*name*/) {
return [=](OpSchema& schema) {
schema.Attr(
"direction",
"Specify if the RNN is forward, reverse, or bidirectional. "
"Must be one of forward (default), reverse, or bidirectional.",
AttributeProto::STRING,
std::string("foward"));
schema.Attr("hidden_size", "Number of neurons in the hidden layer", AttributeProto::INT, OPTIONAL_VALUE);
schema.Attr(
"activation_alpha",
"Optional scaling values used by some activation functions. The values "
"are consumed in the order of activation functions, for example (f, g, h) "
"in LSTM.",
AttributeProto::FLOATS,
OPTIONAL_VALUE);
schema.Attr(
"activation_beta",
"Optional scaling values used by some activation functions. The values "
"are consumed in the order of activation functions, for example (f, g, h) "
"in LSTM.",
AttributeProto::FLOATS,
OPTIONAL_VALUE);
schema.Attr(
"output_sequence",
"The sequence output for the hidden is optional if 0. Default 0.",
AttributeProto::INT,
static_cast<int64_t>(0));
schema.Attr(
"clip",
"Cell clip threshold. Clipping bounds the elements of a tensor "
"in the range of [-threshold, +threshold] and is applied to the input "
"of activations. No clip if not specified.",
AttributeProto::FLOAT,
OPTIONAL_VALUE);
schema.Input(
0,
"X",
"The input sequences packed (and potentially padded) into one 3-D "
"tensor with the shape of `[seq_length, batch_size, input_size]`.",
"T");
schema.Input(
4,
"sequence_lens",
"Optional tensor specifying lengths of the sequences in a batch. "
"If not specified - assumed all sequences in the batch to have "
"length `seq_length`. It has shape `[batch_size]`.",
"T1",
OpSchema::Optional);
schema.Input(
5,
"initial_h",
"Optional initial value of the hidden. If not specified - assumed "
"to be 0. It has shape `[num_directions, batch_size, hidden_size]`.",
"T",
OpSchema::Optional);
schema.Output(
0,
"Y",
"A tensor that concats all the intermediate output values of the hidden. "
"It has shape `[seq_length, num_directions, batch_size, hidden_size]`. "
"It is optional if `output_sequence` is 0.",
"T",
OpSchema::Optional);
schema.Output(
1,
"Y_h",
"The last output value of the hidden. It has shape "
"`[num_directions, batch_size, hidden_size]`.",
"T");
schema.TypeConstraint(
"T",
{"tensor(float16)", "tensor(float)", "tensor(double)"},
"Constrain input and output types to float tensors.");
schema.TypeConstraint("T1", {"tensor(int32)"}, "Constrain seq_lens to integer tensor.");
};
}
static const char* GRU_ver1_doc = R"DOC(
Computes an one-layer GRU. This operator is usually supported via some custom
implementation such as CuDNN.
Notations:
`X` - input tensor
`z` - update gate
`r` - reset gate
`h` - hidden gate
`t` - time step (t-1 means previous time step)
`W[zrh]` - W parameter weight matrix for update, reset, and hidden gates
`R[zrh]` - R recurrence weight matrix for update, reset, and hidden gates
`Wb[zrh]` - W bias vectors for update, reset, and hidden gates
`Rb[zrh]` - R bias vectors for update, reset, and hidden gates
`WB[zrh]` - W parameter weight matrix for backward update, reset, and hidden gates
`RB[zrh]` - R recurrence weight matrix for backward update, reset, and hidden gates
`WBb[zrh]` - W bias vectors for backward update, reset, and hidden gates
`RBb[zrh]` - R bias vectors for backward update, reset, and hidden gates
`H` - Hidden state
`num_directions` - 2 if direction == bidirectional else 1
Activation functions:
Relu(x) - max(0, x)
Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})
Sigmoid(x) - 1/(1 + e^{-x})
(NOTE: Below are optional)
Affine(x) - alpha*x + beta
LeakyRelu(x) - x if x >= 0 else alpha * x
ThresholdedRelu(x) - x if x >= alpha else 0
ScaledTanh(x) - alpha*Tanh(beta*x)
HardSigmoid(x) - min(max(alpha*x + beta, 0), 1)
Elu(x) - x if x >= 0 else alpha*(e^x - 1)
Softsign(x) - x/(1 + |x|)
Softplus(x) - log(1 + e^x)
Equations (Default: f=Sigmoid, g=Tanh):
- zt = f(Xt*(Wz^T) + Ht-1*Rz + Wbz + Rbz)
- rt = f(Xt*(Wr^T) + Ht-1*Rr + Wbr + Rbr)
- ht = g(Xt*(Wh^T) + (rt (.) Ht-1)*Rh + Rbh + Wbh) # default, when linear_before_reset = 0
- ht = g(Xt*(Wh^T) + (rt (.) (Ht-1*Rh + Rbh) + Wbh) # when linear_before_reset != 0
- Ht = (1 - zt) (.) ht + zt (.) Ht-1
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
GRU,
1,
OpSchema()
.SetDoc(GRU_ver1_doc)
.Attr(
"activations",
"A list of 2 (or 4 if bidirectional) activation functions "
"for update, reset, and hidden gates. The activation functions must be one "
"of the activation functions specified above. Optional: See the equations "
"for default if not specified.",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Input(
1,
"W",
"The weight tensor for the gates. Concatenation of `W[zrh]` and `WB[zrh]` "
"(if bidirectional) along dimension 0. This tensor has shape "
"`[num_directions, 3*hidden_size, input_size]`.",
"T")
.Input(
2,
"R",
"The recurrence weight tensor. Concatenation of `R[zrh]` and `RB[zrh]` "
"(if bidirectional) along dimension 0. This tensor has shape "
"`[num_directions, 3*hidden_size, hidden_size]`.",
"T")
.Input(
3,
"B",
"The bias tensor for the gates. Concatenation of `[Wb[zrh], Rb[zrh]]` and "
"`[WBb[zrh], RBb[zrh]]` (if bidirectional) along dimension 0. This tensor "
"has shape `[num_directions, 6*hidden_size]`. Optional: If not specified "
"- assumed to be 0",
"T",
OpSchema::Optional)
.FillUsing(RNNDocGeneratorOld("GRU")));
// Versions 1 to 6 of RNN/LSTM and versions 3 to 6 of GRU:
void RNNShapeInference1(InferenceContext& ctx) {
TensorShapeProto::Dimension num_directions, seq_length, batch_size, hidden_size;
auto direction = getAttribute(ctx, "direction", "forward");
if ((direction == "forward") || (direction == "reverse"))
num_directions.set_dim_value(1);
else if (direction == "bidirectional")
num_directions.set_dim_value(2);
// else leave num_directions unknown in case of incorrect attribute value
auto hidden_size_value = getAttribute(ctx, "hidden_size", -1);
if (hidden_size_value > 0)
hidden_size.set_dim_value(hidden_size_value);
if (hasInputShape(ctx, 0)) {
auto& first_input_shape = getInputShape(ctx, 0);
seq_length = first_input_shape.dim(0);
batch_size = first_input_shape.dim(1);
}
// The treatment of outputs is a bit complicated because of the combination of
// optional outputs and the output_sequence attribute.
bool output_sequence = (getAttribute(ctx, "output_sequence", 0) != 0);
auto num_outputs = ctx.getNumOutputs();
if (num_outputs == 0)
return; // Unlikely, but seems legal.
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (num_outputs > 1)
propagateElemTypeFromInputToOutput(ctx, 0, 1);
if (num_outputs > 2)
propagateElemTypeFromInputToOutput(ctx, 0, 2);
if (output_sequence) {
// No ambiguity in spec
updateOutputShape(ctx, 0, {seq_length, num_directions, batch_size, hidden_size}); // Y
if (num_outputs > 1)
updateOutputShape(ctx, 1, {num_directions, batch_size, hidden_size}); // Y_h
if (num_outputs > 2)
updateOutputShape(ctx, 2, {num_directions, batch_size, hidden_size}); // Y_c
} else {
// Documentation suggests that the output Y is absent in this case
// Different tests seem to disagree on whether Y_h and Y_c, if present,
// should be in positions 0 & 1 or 1 & 2. updateOutputShape(ctx, 0,
// {num_directions, batch_size, hidden_size}); // Y_h if (num_outputs > 1)
// updateOutputShape(ctx, 1, {num_directions, batch_size, hidden_size}); //
// Y_c
}
}
std::function<void(OpSchema&)> RNNDocGenerator1(const char* /*name*/) {
return [=](OpSchema& schema) {
schema.Attr(
"direction",
"Specify if the RNN is forward, reverse, or bidirectional. "
"Must be one of forward (default), reverse, or bidirectional.",
AttributeProto::STRING,
std::string("forward"));
schema.Attr("hidden_size", "Number of neurons in the hidden layer", AttributeProto::INT, OPTIONAL_VALUE);
schema.Attr(
"activation_alpha",
"Optional scaling values used by some activation functions. The values "
"are consumed in the order of activation functions, for example (f, g, h) "
"in LSTM. Default values are the same as of corresponding ONNX operators."
"For example with LeakyRelu, the default alpha is 0.01.",
AttributeProto::FLOATS,
OPTIONAL_VALUE);
schema.Attr(
"activation_beta",
"Optional scaling values used by some activation functions. The values "
"are consumed in the order of activation functions, for example (f, g, h) "
"in LSTM. Default values are the same as of corresponding ONNX operators.",
AttributeProto::FLOATS,
OPTIONAL_VALUE);
schema.Attr(
"output_sequence",
"The sequence output for the hidden is optional if 0. Default 0.",
AttributeProto::INT,
static_cast<int64_t>(0));
schema.Attr(
"clip",
"Cell clip threshold. Clipping bounds the elements of a tensor "
"in the range of [-threshold, +threshold] and is applied to the input "
"of activations. No clip if not specified.",
AttributeProto::FLOAT,
OPTIONAL_VALUE);
schema.Input(
0,
"X",
"The input sequences packed (and potentially padded) into one 3-D "
"tensor with the shape of `[seq_length, batch_size, input_size]`.",
"T");
schema.Input(
4,
"sequence_lens",
"Optional tensor specifying lengths of the sequences in a batch. "
"If not specified - assumed all sequences in the batch to have "
"length `seq_length`. It has shape `[batch_size]`.",
"T1",
OpSchema::Optional);
schema.Input(
5,
"initial_h",
"Optional initial value of the hidden. If not specified - assumed "
"to be 0. It has shape `[num_directions, batch_size, hidden_size]`.",
"T",
OpSchema::Optional);
schema.Output(
0,
"Y",
"A tensor that concats all the intermediate output values of the hidden. "
"It has shape `[seq_length, num_directions, batch_size, hidden_size]`. "
"It is optional if `output_sequence` is 0.",
"T",
OpSchema::Optional);
schema.Output(
1,
"Y_h",
"The last output value of the hidden. It has shape "
"`[num_directions, batch_size, hidden_size]`.",
"T",
OpSchema::Optional);
schema.TypeConstraint(
"T",
{"tensor(float16)", "tensor(float)", "tensor(double)"},
"Constrain input and output types to float tensors.");
schema.TypeConstraint("T1", {"tensor(int32)"}, "Constrain seq_lens to integer tensor.");
schema.TypeAndShapeInferenceFunction(RNNShapeInference1);
};
}
static const char* RNN_ver1_doc = R"DOC(
Computes an one-layer simple RNN. This operator is usually supported
via some custom implementation such as CuDNN.
Notations:
`X` - input tensor
`i` - input gate
`t` - time step (t-1 means previous time step)
`Wi` - W parameter weight matrix for input gate
`Ri` - R recurrence weight matrix for input gate
`Wbi` - W parameter bias vector for input gate
`Rbi` - R parameter bias vector for input gate
`WBi` - W parameter weight matrix for backward input gate
`RBi` - R recurrence weight matrix for backward input gate
`WBbi` - WR bias vectors for backward input gate
`RBbi` - RR bias vectors for backward input gate
`H` - Hidden state
`num_directions` - 2 if direction == bidirectional else 1
Activation functions:
Relu(x) - max(0, x)
Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})
Sigmoid(x) - 1/(1 + e^{-x})
(NOTE: Below are optional)
Affine(x) - alpha*x + beta
LeakyRelu(x) - x if x >= 0 else alpha * x
ThresholdedRelu(x) - x if x >= alpha else 0
ScaledTanh(x) - alpha*Tanh(beta*x)
HardSigmoid(x) - min(max(alpha*x + beta, 0), 1)
Elu(x) - x if x >= 0 else alpha*(e^x - 1)
Softsign(x) - x/(1 + |x|)
Softplus(x) - log(1 + e^x)
Equations (Default: f=Tanh):
- Ht = f(Xt*(Wi^T) + Ht-1*Ri + Wbi + Rbi)
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
RNN,
1,
OpSchema()
.SetDoc(RNN_ver1_doc)
.Attr(
"activations",
"One (or two if bidirectional) activation function for "
"input gate. The activation function must be one of the activation "
"functions specified above. Optional: Default `Tanh` if not specified.",
AttributeProto::STRINGS,
std::vector<std::string>{"Tanh", "Tanh"})
.Input(
1,
"W",
"The weight tensor for input gate. Concatenation of `Wi` and `WBi` "
"(if bidirectional). The tensor has shape "
"`[num_directions, hidden_size, input_size]`.",
"T")
.Input(
2,
"R",
"The recurrence weight tensor. Concatenation of `Ri` and `RBi` "
"(if bidirectional). The tensor has shape "
"`[num_directions, hidden_size, hidden_size]`.",
"T")
.Input(
3,
"B",
"The bias tensor for input gate. Concatenation of `[Wbi, Rbi]` "
"and `[WBbi, RBbi]` (if bidirectional). The tensor has shape "
"`[num_directions, 2*hidden_size]`. Optional: If not specified - assumed "
"to be 0.",
"T",
OpSchema::Optional)
.FillUsing(RNNDocGenerator1("RNN")));
static const char* GRU_ver3_doc = R"DOC(
Computes an one-layer GRU. This operator is usually supported via some custom
implementation such as CuDNN.
Notations:
`X` - input tensor
`z` - update gate
`r` - reset gate
`h` - hidden gate
`t` - time step (t-1 means previous time step)
`W[zrh]` - W parameter weight matrix for update, reset, and hidden gates
`R[zrh]` - R recurrence weight matrix for update, reset, and hidden gates
`Wb[zrh]` - W bias vectors for update, reset, and hidden gates
`Rb[zrh]` - R bias vectors for update, reset, and hidden gates
`WB[zrh]` - W parameter weight matrix for backward update, reset, and hidden gates
`RB[zrh]` - R recurrence weight matrix for backward update, reset, and hidden gates
`WBb[zrh]` - W bias vectors for backward update, reset, and hidden gates
`RBb[zrh]` - R bias vectors for backward update, reset, and hidden gates
`H` - Hidden state
`num_directions` - 2 if direction == bidirectional else 1
Activation functions:
Relu(x) - max(0, x)
Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})
Sigmoid(x) - 1/(1 + e^{-x})
(NOTE: Below are optional)
Affine(x) - alpha*x + beta
LeakyRelu(x) - x if x >= 0 else alpha * x
ThresholdedRelu(x) - x if x >= alpha else 0
ScaledTanh(x) - alpha*Tanh(beta*x)
HardSigmoid(x) - min(max(alpha*x + beta, 0), 1)
Elu(x) - x if x >= 0 else alpha*(e^x - 1)
Softsign(x) - x/(1 + |x|)
Softplus(x) - log(1 + e^x)
Equations (Default: f=Sigmoid, g=Tanh):
- zt = f(Xt*(Wz^T) + Ht-1*Rz + Wbz + Rbz)
- rt = f(Xt*(Wr^T) + Ht-1*Rr + Wbr + Rbr)
- ht = g(Xt*(Wh^T) + (rt (.) Ht-1)*Rh + Rbh + Wbh) # default, when linear_before_reset = 0
- ht = g(Xt*(Wh^T) + (rt (.) (Ht-1*Rh + Rbh) + Wbh) # when linear_before_reset != 0
- Ht = (1 - zt) (.) ht + zt (.) Ht-1
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
GRU,
3,
OpSchema()
.SetDoc(GRU_ver3_doc)
.Attr(
"activations",
"A list of 2 (or 4 if bidirectional) activation functions "
"for update, reset, and hidden gates. The activation functions must be one "
"of the activation functions specified above. Optional: See the equations "
"for default if not specified.",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr(
"linear_before_reset",
"When computing the output of the hidden gate, "
"apply the linear transformation before multiplying by the output of the "
"reset gate.",
AttributeProto::INT,
static_cast<int64_t>(0))
.Input(
1,
"W",
"The weight tensor for the gates. Concatenation of `W[zrh]` and `WB[zrh]` "
"(if bidirectional) along dimension 0. This tensor has shape "
"`[num_directions, 3*hidden_size, input_size]`.",
"T")
.Input(
2,
"R",
"The recurrence weight tensor. Concatenation of `R[zrh]` and `RB[zrh]` "
"(if bidirectional) along dimension 0. This tensor has shape "
"`[num_directions, 3*hidden_size, hidden_size]`.",
"T")
.Input(
3,
"B",
"The bias tensor for the gates. Concatenation of `[Wb[zrh], Rb[zrh]]` and "
"`[WBb[zrh], RBb[zrh]]` (if bidirectional) along dimension 0. This tensor "
"has shape `[num_directions, 6*hidden_size]`. Optional: If not specified "
"- assumed to be 0",
"T",
OpSchema::Optional)
.FillUsing(RNNDocGenerator1("GRU")));
static const char* LSTM_ver1_doc = R"DOC(
Computes an one-layer LSTM. This operator is usually supported via some
custom implementation such as CuDNN.
Notations:
`X` - input tensor
`i` - input gate
`o` - output gate
`f` - forget gate
`c` - cell gate
`t` - time step (t-1 means previous time step)
`W[iofc]` - W parameter weight matrix for input, output, forget, and cell gates
`R[iofc]` - R recurrence weight matrix for input, output, forget, and cell gates
`Wb[iofc]` - W bias vectors for input, output, forget, and cell gates
`Rb[iofc]` - R bias vectors for input, output, forget, and cell gates
`P[iof]` - P peephole weight vector for input, output, and forget gates
`WB[iofc]` - W parameter weight matrix for backward input, output, forget, and cell gates
`RB[iofc]` - R recurrence weight matrix for backward input, output, forget, and cell gates
`WBb[iofc]` - W bias vectors for backward input, output, forget, and cell gates
`RBb[iofc]` - R bias vectors for backward input, output, forget, and cell gates
`PB[iof]` - P peephole weight vector for backward input, output, and forget gates
`H` - Hidden state
`num_directions` - 2 if direction == bidirectional else 1
Activation functions:
Relu(x) - max(0, x)
Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})
Sigmoid(x) - 1/(1 + e^{-x})
(NOTE: Below are optional)
Affine(x) - alpha*x + beta
LeakyRelu(x) - x if x >= 0 else alpha * x
ThresholdedRelu(x) - x if x >= alpha else 0
ScaledTanh(x) - alpha*Tanh(beta*x)
HardSigmoid(x) - min(max(alpha*x + beta, 0), 1)
Elu(x) - x if x >= 0 else alpha*(e^x - 1)
Softsign(x) - x/(1 + |x|)
Softplus(x) - log(1 + e^x)
Equations (Default: f=Sigmoid, g=Tanh, h=Tanh):
- it = f(Xt*(Wi^T) + Ht-1*Ri + Pi (.) Ct-1 + Wbi + Rbi)
- ft = f(Xt*(Wf^T) + Ht-1*Rf + Pf (.) Ct-1 + Wbf + Rbf)
- ct = g(Xt*(Wc^T) + Ht-1*Rc + Wbc + Rbc)
- Ct = ft (.) Ct-1 + it (.) ct
- ot = f(Xt*(Wo^T) + Ht-1*Ro + Po (.) Ct + Wbo + Rbo)
- Ht = ot (.) h(Ct)
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
LSTM,
1,
OpSchema()
.SetDoc(LSTM_ver1_doc)
.Attr(
"activations",
"A list of 3 (or 6 if bidirectional) activation functions "
"for input, output, forget, cell, and hidden. The activation functions must "
"be one of the activation functions specified above. Optional: See the equations "
"for default if not specified.",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr(
"input_forget",
"Couple the input and forget gates if 1, default 0.",
AttributeProto::INT,
static_cast<int64_t>(0))
.Input(
1,
"W",
"The weight tensor for the gates. Concatenation of `W[iofc]` and "
"`WB[iofc]` (if bidirectional) along dimension 0. The tensor has shape "
"`[num_directions, 4*hidden_size, input_size]`.",
"T")
.Input(
2,
"R",
"The recurrence weight tensor. Concatenation of `R[iofc]` and "
"`RB[iofc]` (if bidirectional) along dimension 0. This tensor has shape "
"`[num_directions, 4*hidden_size, hidden_size]`.",
"T")
.Input(
3,
"B",
"The bias tensor for input gate. Concatenation of `[Wb[iofc], Rb[iofc]]`, "
"and `[WBb[iofc], RBb[iofc]]` (if bidirectional) along dimension 0. This "
"tensor has shape `[num_directions, 8*hidden_size]`. Optional: If not "
"specified - assumed to be 0.",
"T",
OpSchema::Optional)
.Input(
6,
"initial_c",
"Optional initial value of the cell. If not specified - assumed "
"to be 0. It has shape `[num_directions, batch_size, hidden_size]`.",
"T",
OpSchema::Optional)
.Input(
7,
"P",
"The weight tensor for peepholes. Concatenation of `P[iof]` and "
"`PB[iof]` (if bidirectional) along dimension 0. It has shape "
"`[num_directions, 3*hidde_size]`. Optional: If not specified - "
"assumed to be 0.",
"T",
OpSchema::Optional)
.FillUsing(RNNDocGenerator1("LSTM"))
.Output(
2,
"Y_c",
"The last output value of the cell. It has shape "
"`[num_directions, batch_size, hidden_size]`.",
"T",
OpSchema::Optional));
} // namespace ONNX_NAMESPACE
// Versions 7 to 13 of RNN/LSTM/GRU
namespace ONNX_NAMESPACE {
void RNNShapeInference2(InferenceContext& ctx) {
TensorShapeProto::Dimension num_directions, seq_length, batch_size, hidden_size;
auto direction = getAttribute(ctx, "direction", "forward");
if ((direction == "forward") || (direction == "reverse"))
num_directions.set_dim_value(1);
else if (direction == "bidirectional")
num_directions.set_dim_value(2);
// else leave num_directions unknown in case of incorrect attribute value
auto hidden_size_value = getAttribute(ctx, "hidden_size", -1);
if (hidden_size_value > 0)
hidden_size.set_dim_value(hidden_size_value);
if (hasInputShape(ctx, 0)) {
auto& first_input_shape = getInputShape(ctx, 0);
if (first_input_shape.dim_size() != 3) {
fail_shape_inference("First input tensor must have rank 3");
}
seq_length = first_input_shape.dim(0);
batch_size = first_input_shape.dim(1);
}
auto num_outputs = ctx.getNumOutputs();
if (num_outputs > 0) {
// Y
propagateElemTypeFromInputToOutput(ctx, 0, 0);
updateOutputShape(ctx, 0, {seq_length, num_directions, batch_size, hidden_size});
}
if (num_outputs > 1) {
// Y_h
propagateElemTypeFromInputToOutput(ctx, 0, 1);
updateOutputShape(ctx, 1, {num_directions, batch_size, hidden_size});
}
if (num_outputs > 2) {
// Y_c : only in the case of LSTM
propagateElemTypeFromInputToOutput(ctx, 0, 2);
updateOutputShape(ctx, 2, {num_directions, batch_size, hidden_size});
}
}
std::function<void(OpSchema&)> RNNDocGenerator2(const char* /*name*/) {
return [=](OpSchema& schema) {
schema.Attr(
"direction",
"Specify if the RNN is forward, reverse, or bidirectional. "
"Must be one of forward (default), reverse, or bidirectional.",
AttributeProto::STRING,
std::string("forward"));
schema.Attr("hidden_size", "Number of neurons in the hidden layer", AttributeProto::INT, OPTIONAL_VALUE);
schema.Attr(
"activation_alpha",
"Optional scaling values used by some activation functions. The values "
"are consumed in the order of activation functions, for example (f, g, h) "
"in LSTM. Default values are the same as of corresponding ONNX operators."
"For example with LeakyRelu, the default alpha is 0.01.",
AttributeProto::FLOATS,
OPTIONAL_VALUE);
schema.Attr(
"activation_beta",
"Optional scaling values used by some activation functions. The values "
"are consumed in the order of activation functions, for example (f, g, h) "
"in LSTM. Default values are the same as of corresponding ONNX operators.",
AttributeProto::FLOATS,
OPTIONAL_VALUE);
schema.Attr(
"clip",
"Cell clip threshold. Clipping bounds the elements of a tensor "
"in the range of [-threshold, +threshold] and is applied to the input "
"of activations. No clip if not specified.",
AttributeProto::FLOAT,
OPTIONAL_VALUE);
schema.Input(
0,
"X",
"The input sequences packed (and potentially padded) into one 3-D "
"tensor with the shape of `[seq_length, batch_size, input_size]`.",
"T");
schema.Input(
4,
"sequence_lens",
"Optional tensor specifying lengths of the sequences in a batch. "
"If not specified - assumed all sequences in the batch to have "
"length `seq_length`. It has shape `[batch_size]`.",
"T1",
OpSchema::Optional);
schema.Input(
5,
"initial_h",
"Optional initial value of the hidden. If not specified - assumed "
"to be 0. It has shape `[num_directions, batch_size, hidden_size]`.",
"T",
OpSchema::Optional);
schema.Output(
0,
"Y",
"A tensor that concats all the intermediate output values of the hidden. "
"It has shape `[seq_length, num_directions, batch_size, hidden_size]`. ",
"T",
OpSchema::Optional);
schema.Output(
1,
"Y_h",
"The last output value of the hidden. It has shape "
"`[num_directions, batch_size, hidden_size]`.",
"T",
OpSchema::Optional);
schema.TypeConstraint(
"T",
{"tensor(float16)", "tensor(float)", "tensor(double)"},
"Constrain input and output types to float tensors.");
schema.TypeConstraint("T1", {"tensor(int32)"}, "Constrain seq_lens to integer tensor.");
schema.TypeAndShapeInferenceFunction(RNNShapeInference2);
};
}
static const char* RNN_ver7_doc = R"DOC(
Computes an one-layer simple RNN. This operator is usually supported
via some custom implementation such as CuDNN.
Notations:
`X` - input tensor
`i` - input gate
`t` - time step (t-1 means previous time step)
`Wi` - W parameter weight matrix for input gate
`Ri` - R recurrence weight matrix for input gate
`Wbi` - W parameter bias vector for input gate
`Rbi` - R parameter bias vector for input gate
`WBi` - W parameter weight matrix for backward input gate
`RBi` - R recurrence weight matrix for backward input gate
`WBbi` - WR bias vectors for backward input gate
`RBbi` - RR bias vectors for backward input gate
`H` - Hidden state
`num_directions` - 2 if direction == bidirectional else 1
Activation functions:
Relu(x) - max(0, x)
Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})
Sigmoid(x) - 1/(1 + e^{-x})
(NOTE: Below are optional)
Affine(x) - alpha*x + beta
LeakyRelu(x) - x if x >= 0 else alpha * x
ThresholdedRelu(x) - x if x >= alpha else 0
ScaledTanh(x) - alpha*Tanh(beta*x)
HardSigmoid(x) - min(max(alpha*x + beta, 0), 1)
Elu(x) - x if x >= 0 else alpha*(e^x - 1)
Softsign(x) - x/(1 + |x|)
Softplus(x) - log(1 + e^x)
Equations (Default: f=Tanh):
- Ht = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Wbi + Rbi)
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
RNN,
7,
OpSchema()
.SetDoc(RNN_ver7_doc + GenerateOptionalArgumentsDoc())
.Attr(
"activations",
"One (or two if bidirectional) activation function for "
"input gate. The activation function must be one of the activation "
"functions specified above. Optional: Default `Tanh` if not specified.",
AttributeProto::STRINGS,
std::vector<std::string>{"Tanh", "Tanh"})
.Input(
1,
"W",
"The weight tensor for input gate. Concatenation of `Wi` and `WBi` "
"(if bidirectional). The tensor has shape "
"`[num_directions, hidden_size, input_size]`.",
"T")
.Input(
2,
"R",
"The recurrence weight tensor. Concatenation of `Ri` and `RBi` "
"(if bidirectional). The tensor has shape "
"`[num_directions, hidden_size, hidden_size]`.",
"T")
.Input(
3,
"B",
"The bias tensor for input gate. Concatenation of `[Wbi, Rbi]` "
"and `[WBbi, RBbi]` (if bidirectional). The tensor has shape "
"`[num_directions, 2*hidden_size]`. Optional: If not specified - assumed "
"to be 0.",
"T",
OpSchema::Optional)
.FillUsing(RNNDocGenerator2("RNN")));
static const char* GRU_ver7_doc = R"DOC(
Computes an one-layer GRU. This operator is usually supported via some custom
implementation such as CuDNN.
Notations:
`X` - input tensor
`z` - update gate
`r` - reset gate
`h` - hidden gate
`t` - time step (t-1 means previous time step)
`W[zrh]` - W parameter weight matrix for update, reset, and hidden gates
`R[zrh]` - R recurrence weight matrix for update, reset, and hidden gates
`Wb[zrh]` - W bias vectors for update, reset, and hidden gates
`Rb[zrh]` - R bias vectors for update, reset, and hidden gates
`WB[zrh]` - W parameter weight matrix for backward update, reset, and hidden gates
`RB[zrh]` - R recurrence weight matrix for backward update, reset, and hidden gates
`WBb[zrh]` - W bias vectors for backward update, reset, and hidden gates
`RBb[zrh]` - R bias vectors for backward update, reset, and hidden gates
`H` - Hidden state
`num_directions` - 2 if direction == bidirectional else 1
Activation functions:
Relu(x) - max(0, x)
Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})
Sigmoid(x) - 1/(1 + e^{-x})
(NOTE: Below are optional)
Affine(x) - alpha*x + beta
LeakyRelu(x) - x if x >= 0 else alpha * x
ThresholdedRelu(x) - x if x >= alpha else 0
ScaledTanh(x) - alpha*Tanh(beta*x)
HardSigmoid(x) - min(max(alpha*x + beta, 0), 1)
Elu(x) - x if x >= 0 else alpha*(e^x - 1)
Softsign(x) - x/(1 + |x|)
Softplus(x) - log(1 + e^x)
Equations (Default: f=Sigmoid, g=Tanh):
- zt = f(Xt*(Wz^T) + Ht-1*(Rz^T) + Wbz + Rbz)
- rt = f(Xt*(Wr^T) + Ht-1*(Rr^T) + Wbr + Rbr)
- ht = g(Xt*(Wh^T) + (rt (.) Ht-1)*(Rh^T) + Rbh + Wbh) # default, when linear_before_reset = 0
- ht = g(Xt*(Wh^T) + (rt (.) (Ht-1*(Rh^T) + Rbh)) + Wbh) # when linear_before_reset != 0
- Ht = (1 - zt) (.) ht + zt (.) Ht-1
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
GRU,
7,
OpSchema()
.SetDoc(GRU_ver7_doc + GenerateOptionalArgumentsDoc())
.Attr(
"activations",
"A list of 2 (or 4 if bidirectional) activation functions "
"for update, reset, and hidden gates. The activation functions must be one "
"of the activation functions specified above. Optional: See the equations "
"for default if not specified.",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr(
"linear_before_reset",
"When computing the output of the hidden gate, "
"apply the linear transformation before multiplying by the output of the "
"reset gate.",
AttributeProto::INT,
static_cast<int64_t>(0))
.Input(
1,
"W",
"The weight tensor for the gates. Concatenation of `W[zrh]` and `WB[zrh]` "
"(if bidirectional) along dimension 0. This tensor has shape "
"`[num_directions, 3*hidden_size, input_size]`.",
"T")
.Input(
2,
"R",
"The recurrence weight tensor. Concatenation of `R[zrh]` and `RB[zrh]` "
"(if bidirectional) along dimension 0. This tensor has shape "
"`[num_directions, 3*hidden_size, hidden_size]`.",
"T")
.Input(
3,
"B",
"The bias tensor for the gates. Concatenation of `[Wb[zrh], Rb[zrh]]` and "
"`[WBb[zrh], RBb[zrh]]` (if bidirectional) along dimension 0. This tensor "
"has shape `[num_directions, 6*hidden_size]`. Optional: If not specified "
"- assumed to be 0",
"T",
OpSchema::Optional)
.FillUsing(RNNDocGenerator2("GRU")));
static const char* LSTM_ver7_doc = R"DOC(
Computes an one-layer LSTM. This operator is usually supported via some
custom implementation such as CuDNN.
Notations:
`X` - input tensor
`i` - input gate
`o` - output gate
`f` - forget gate
`c` - cell gate
`t` - time step (t-1 means previous time step)
`W[iofc]` - W parameter weight matrix for input, output, forget, and cell gates
`R[iofc]` - R recurrence weight matrix for input, output, forget, and cell gates
`Wb[iofc]` - W bias vectors for input, output, forget, and cell gates
`Rb[iofc]` - R bias vectors for input, output, forget, and cell gates
`P[iof]` - P peephole weight vector for input, output, and forget gates
`WB[iofc]` - W parameter weight matrix for backward input, output, forget, and cell gates
`RB[iofc]` - R recurrence weight matrix for backward input, output, forget, and cell gates
`WBb[iofc]` - W bias vectors for backward input, output, forget, and cell gates
`RBb[iofc]` - R bias vectors for backward input, output, forget, and cell gates
`PB[iof]` - P peephole weight vector for backward input, output, and forget gates
`H` - Hidden state
`num_directions` - 2 if direction == bidirectional else 1
Activation functions:
Relu(x) - max(0, x)
Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})
Sigmoid(x) - 1/(1 + e^{-x})
(NOTE: Below are optional)
Affine(x) - alpha*x + beta
LeakyRelu(x) - x if x >= 0 else alpha * x
ThresholdedRelu(x) - x if x >= alpha else 0
ScaledTanh(x) - alpha*Tanh(beta*x)
HardSigmoid(x) - min(max(alpha*x + beta, 0), 1)
Elu(x) - x if x >= 0 else alpha*(e^x - 1)
Softsign(x) - x/(1 + |x|)
Softplus(x) - log(1 + e^x)
Equations (Default: f=Sigmoid, g=Tanh, h=Tanh):
- it = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Pi (.) Ct-1 + Wbi + Rbi)
- ft = f(Xt*(Wf^T) + Ht-1*(Rf^T) + Pf (.) Ct-1 + Wbf + Rbf)
- ct = g(Xt*(Wc^T) + Ht-1*(Rc^T) + Wbc + Rbc)
- Ct = ft (.) Ct-1 + it (.) ct
- ot = f(Xt*(Wo^T) + Ht-1*(Ro^T) + Po (.) Ct + Wbo + Rbo)
- Ht = ot (.) h(Ct)
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
LSTM,
7,
OpSchema()
.SetDoc(LSTM_ver7_doc + GenerateOptionalArgumentsDoc())
.Attr(
"activations",
"A list of 3 (or 6 if bidirectional) activation functions "
"for input, output, forget, cell, and hidden. The activation functions must "
"be one of the activation functions specified above. Optional: See the equations "
"for default if not specified.",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr("input_forget", "Couple the input and forget gates if 1.", AttributeProto::INT, static_cast<int64_t>(0))
.Input(
1,
"W",
"The weight tensor for the gates. Concatenation of `W[iofc]` and "
"`WB[iofc]` (if bidirectional) along dimension 0. The tensor has shape "
"`[num_directions, 4*hidden_size, input_size]`.",
"T")
.Input(
2,
"R",
"The recurrence weight tensor. Concatenation of `R[iofc]` and "
"`RB[iofc]` (if bidirectional) along dimension 0. This tensor has shape "
"`[num_directions, 4*hidden_size, hidden_size]`.",
"T")
.Input(
3,
"B",
"The bias tensor for input gate. Concatenation of `[Wb[iofc], Rb[iofc]]`, "
"and `[WBb[iofc], RBb[iofc]]` (if bidirectional) along dimension 0. This "
"tensor has shape `[num_directions, 8*hidden_size]`. Optional: If not "
"specified - assumed to be 0.",
"T",
OpSchema::Optional)
.Input(
6,
"initial_c",
"Optional initial value of the cell. If not specified - assumed "
"to be 0. It has shape `[num_directions, batch_size, hidden_size]`.",
"T",
OpSchema::Optional)
.Input(
7,
"P",
"The weight tensor for peepholes. Concatenation of `P[iof]` and "
"`PB[iof]` (if bidirectional) along dimension 0. It has shape "
"`[num_directions, 3*hidde_size]`. Optional: If not specified - "
"assumed to be 0.",
"T",
OpSchema::Optional)
.FillUsing(RNNDocGenerator2("LSTM"))
.Output(
2,
"Y_c",
"The last output value of the cell. It has shape "
"`[num_directions, batch_size, hidden_size]`.",
"T",
OpSchema::Optional));
} // namespace ONNX_NAMESPACE