Spaces:
Sleeping
Sleeping
/* | |
* SPDX-License-Identifier: Apache-2.0 | |
*/ | |
namespace ONNX_NAMESPACE { | |
static const char* QuantizeLinear_ver19_doc = R"DOC( | |
The linear quantization operator. It consumes a high precision tensor, a scale, and a zero point to compute the low precision / quantized tensor. | |
The scale factor and zero point must have same shape, and can be either a scalar for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization. | |
The quantization formula is `y = saturate ((x / y_scale) + y_zero_point)`. | |
For saturation, it saturates to [0, 255] if it's uint8, or [-128, 127] if it's int8. | |
For (x / y_scale), it's rounding to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details. | |
'y_zero_point' and 'y' must have same type. | |
'y_zero_point' is usually not used for quantization to float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz, | |
but the quantization formula remains the same for consistency and | |
the type of the attribute 'y_zero_point' still determines the quantization type. | |
)DOC"; | |
ONNX_OPERATOR_SET_SCHEMA( | |
QuantizeLinear, | |
19, | |
OpSchema() | |
.Input(0, "x", "N-D full precision Input tensor to be quantized.", "T1") | |
.Input( | |
1, | |
"y_scale", | |
"Scale for doing quantization to get 'y'. It can be a scalar, which means per-tensor/layer quantization, " | |
"or a 1-D Tensor for per-axis quantization.", | |
"T1") | |
.Input( | |
2, | |
"y_zero_point", | |
"Zero point for doing quantization to get 'y'. Shape must match y_scale. " | |
"Default is uint8 with zero point of 0 if it's not specified.", | |
"T2", | |
OpSchema::Optional) | |
.Output(0, "y", "N-D quantized output tensor. It has same shape as input 'x'.", "T2") | |
.Attr( | |
"axis", | |
"(Optional) The axis of the quantization dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).", | |
AttributeProto::INT, | |
static_cast<int64_t>(1)) | |
.Attr( | |
"saturate", | |
"The parameter defines how the conversion behaves if an input value is out of " | |
"range of the destination type. It only applies for float 8 quantization " | |
"(float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz). It is true by default. " | |
"All cases are fully described in two tables inserted in the operator description.", | |
AttributeProto::INT, | |
static_cast<int64_t>(1)) | |
.TypeConstraint( | |
"T1", | |
{"tensor(float)", "tensor(float16)", "tensor(bfloat16)", "tensor(int32)"}, | |
"Constrain 'x' to float, float16, bfloat16 or int32 tensor.") | |
.TypeConstraint( | |
"T2", | |
{"tensor(int8)", | |
"tensor(uint8)", | |
"tensor(float8e4m3fn)", | |
"tensor(float8e4m3fnuz)", | |
"tensor(float8e5m2)", | |
"tensor(float8e5m2fnuz)"}, | |
"Constrain 'y_zero_point' and 'y' to 8-bit integer/float tensor.") | |
.SetDoc(QuantizeLinear_ver19_doc) | |
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) { | |
if (ctx.hasInput(2)) { | |
propagateElemTypeFromInputToOutput(ctx, 2, 0); | |
} else { | |
updateOutputElemType(ctx, 0, TensorProto::UINT8); | |
} | |
if (!hasInputShape(ctx, 0)) { | |
return; | |
} | |
auto& input_shape = getInputShape(ctx, 0); | |
updateOutputShape(ctx, 0, input_shape); | |
})); | |
static const char* DequantizeLinear_ver19_doc = R"DOC( | |
The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the full precision tensor. | |
The dequantization formula is `y = (x - x_zero_point) * x_scale`. `x_scale` and `x_zero_point` must have same shape, and can be either a scalar | |
for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization. | |
`x_zero_point` and `x` must have same type. `x` and `y` must have same shape. In the case of dequantizing int32, | |
there's no zero point (zero point is supposed to be 0). | |
`zero-point` is usually not used in the case of float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz quantization, | |
but the dequantization formula remains the same for consistency and 'x_scale' still determines the output type. | |
)DOC"; | |
ONNX_OPERATOR_SET_SCHEMA( | |
DequantizeLinear, | |
19, | |
OpSchema() | |
.Input(0, "x", "N-D quantized input tensor to be de-quantized.", "T1") | |
.Input( | |
1, | |
"x_scale", | |
"Scale for input 'x'. It can be a scalar, which means a per-tensor/layer dequantization, " | |
"or a 1-D tensor for per-axis dequantization.", | |
"T2") | |
.Input( | |
2, | |
"x_zero_point", | |
"Zero point for input 'x'. Shape must match x_scale. " | |
"It's optional. Zero point is 0 when it's not specified.", | |
"T1", | |
OpSchema::Optional) | |
.Output(0, "y", "N-D full precision output tensor. It has same shape as input 'x'.", "T2") | |
.Attr( | |
"axis", | |
"(Optional) The axis of the dequantizing dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).", | |
AttributeProto::INT, | |
static_cast<int64_t>(1)) | |
.TypeConstraint( | |
"T1", | |
{"tensor(int8)", | |
"tensor(uint8)", | |
"tensor(int32)", | |
"tensor(float8e4m3fn)", | |
"tensor(float8e4m3fnuz)", | |
"tensor(float8e5m2)", | |
"tensor(float8e5m2fnuz)"}, | |
"Constrain 'x_zero_point' and 'x' to 8-bit integer or float, or /32-bit integer tensor.") | |
.TypeConstraint( | |
"T2", | |
{"tensor(float)", "tensor(float16)", "tensor(bfloat16)"}, | |
"'x_scale' determines the output type.") | |
.SetDoc(DequantizeLinear_ver19_doc) | |
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) { | |
propagateElemTypeFromInputToOutput(ctx, 1, 0); | |
if (!hasInputShape(ctx, 0)) { | |
return; | |
} | |
auto& input_shape = getInputShape(ctx, 0); | |
updateOutputShape(ctx, 0, input_shape); | |
})); | |
static const char* QuantizeLinear_ver13_doc = R"DOC( | |
The linear quantization operator. It consumes a high precision tensor, a scale, and a zero point to compute the low precision / quantized tensor. | |
The scale factor and zero point must have same shape, and can be either a scalar for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization. | |
The quantization formula is y = saturate ((x / y_scale) + y_zero_point). | |
For saturation, it saturates to [0, 255] if it's uint8, or [-128, 127] if it's int8. | |
For (x / y_scale), it's rounding to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details. 'y_zero_point' and 'y' must have same type. | |
)DOC"; | |
ONNX_OPERATOR_SET_SCHEMA( | |
QuantizeLinear, | |
13, | |
OpSchema() | |
.Input(0, "x", "N-D full precision Input tensor to be quantized.", "T1") | |
.Input( | |
1, | |
"y_scale", | |
"Scale for doing quantization to get 'y'. It can be a scalar, which means per-tensor/layer quantization, " | |
"or a 1-D Tensor for per-axis quantization.", | |
"tensor(float)") | |
.Input( | |
2, | |
"y_zero_point", | |
"Zero point for doing quantization to get 'y'. Shape must match y_scale. " | |
"Default is uint8 with zero point of 0 if it's not specified.", | |
"T2", | |
OpSchema::Optional) | |
.Output(0, "y", "N-D quantized output tensor. It has same shape as input 'x'.", "T2") | |
.Attr( | |
"axis", | |
"(Optional) The axis of the quantization dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).", | |
AttributeProto::INT, | |
static_cast<int64_t>(1)) | |
.TypeConstraint("T1", {"tensor(float)", "tensor(int32)"}, "Constrain 'x' to float or int32 tensor.") | |
.TypeConstraint( | |
"T2", | |
{"tensor(int8)", "tensor(uint8)"}, | |
"Constrain 'y_zero_point' and 'y' to 8-bit integer tensor.") | |
.SetDoc(QuantizeLinear_ver13_doc) | |
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) { | |
if (ctx.hasInput(2)) { | |
propagateElemTypeFromInputToOutput(ctx, 2, 0); | |
} else { | |
updateOutputElemType(ctx, 0, TensorProto::UINT8); | |
} | |
if (!hasInputShape(ctx, 0)) { | |
return; | |
} | |
auto& input_shape = getInputShape(ctx, 0); | |
updateOutputShape(ctx, 0, input_shape); | |
})); | |
static const char* DequantizeLinear_ver13_doc = R"DOC( | |
The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the full precision tensor. | |
The dequantization formula is `y = (x - x_zero_point) * x_scale`. `x_scale` and `x_zero_point` must have same shape, and can be either a scalar | |
for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization. | |
`x_zero_point` and `x` must have same type. `x` and `y` must have same shape. In the case of dequantizing int32, | |
there's no zero point (zero point is supposed to be 0). | |
)DOC"; | |
ONNX_OPERATOR_SET_SCHEMA( | |
DequantizeLinear, | |
13, | |
OpSchema() | |
.Input(0, "x", "N-D quantized input tensor to be de-quantized.", "T") | |
.Input( | |
1, | |
"x_scale", | |
"Scale for input 'x'. It can be a scalar, which means a per-tensor/layer dequantization, " | |
"or a 1-D tensor for per-axis dequantization.", | |
"tensor(float)") | |
.Input( | |
2, | |
"x_zero_point", | |
"Zero point for input 'x'. Shape must match x_scale. " | |
"It's optional. Zero point is 0 when it's not specified.", | |
"T", | |
OpSchema::Optional) | |
.Output(0, "y", "N-D full precision output tensor. It has same shape as input 'x'.", "tensor(float)") | |
.Attr( | |
"axis", | |
"(Optional) The axis of the dequantizing dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).", | |
AttributeProto::INT, | |
static_cast<int64_t>(1)) | |
.TypeConstraint( | |
"T", | |
{"tensor(int8)", "tensor(uint8)", "tensor(int32)"}, | |
"Constrain 'x_zero_point' and 'x' to 8-bit/32-bit integer tensor.") | |
.SetDoc(DequantizeLinear_ver13_doc) | |
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) { | |
auto y_type = ctx.getOutputType(0); | |
// only float is supported | |
y_type->mutable_tensor_type()->set_elem_type(ONNX_NAMESPACE::TensorProto::FLOAT); | |
if (!hasInputShape(ctx, 0)) | |
return; | |
auto& input_shape = getInputShape(ctx, 0); | |
updateOutputShape(ctx, 0, input_shape); | |
})); | |
static const char* QuantizeLinear_ver10_doc = R"DOC( | |
The linear per-tensor/layer quantization operator. It consumes a high precision tensor, a scale, a zero point to compute the low precision / quantized tensor. | |
The quantization formula is y = saturate ((x / y_scale) + y_zero_point). For saturation, it saturates to [0, 255] if it's uint8, or [-128, 127] if it's int8. | |
For (x / y_scale), it's rounding to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details. 'y_zero_point' and 'y' must have same type. | |
)DOC"; | |
ONNX_OPERATOR_SET_SCHEMA( | |
QuantizeLinear, | |
10, | |
OpSchema() | |
.Input(0, "x", "N-D full precision Input tensor to be quantized.", "T1") | |
.Input( | |
1, | |
"y_scale", | |
"Scale for doing quantization to get 'y'. It's a scalar, which means a per-tensor/layer quantization.", | |
"tensor(float)") | |
.Input( | |
2, | |
"y_zero_point", | |
"Zero point for doing quantization to get 'y'. It's a scalar, which means a per-tensor/layer quantization. " | |
"Default value is uint8 typed 0 if it's not specified.", | |
"T2", | |
OpSchema::Optional) | |
.Output(0, "y", "N-D quantized output tensor. It has same shape as input 'x'.", "T2") | |
.TypeConstraint("T1", {"tensor(float)", "tensor(int32)"}, "Constrain 'x' to float or int32 tensor.") | |
.TypeConstraint( | |
"T2", | |
{"tensor(int8)", "tensor(uint8)"}, | |
"Constrain 'y_zero_point' and 'y' to 8-bit integer tensor.") | |
.SetDoc(QuantizeLinear_ver10_doc) | |
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) { | |
if (ctx.hasInput(2)) { | |
propagateElemTypeFromInputToOutput(ctx, 2, 0); | |
} else { | |
updateOutputElemType(ctx, 0, TensorProto::UINT8); | |
} | |
if (!hasInputShape(ctx, 0)) { | |
return; | |
} | |
auto& input_shape = getInputShape(ctx, 0); | |
updateOutputShape(ctx, 0, input_shape); | |
})); | |
static const char* DequantizeLinear_ver10_doc = R"DOC( | |
The linear dequantization operator. It consumes a quantized tensor, a scale, a zero point to compute the full precision tensor. | |
The dequantization formula is y = (x - x_zero_point) * x_scale. 'x_scale' and 'x_zero_point' are both scalars. | |
'x_zero_point' and 'x' must have same type. 'x' and 'y' must have same shape. In the case of dequantizing int32, | |
there's no zero point (zero point is supposed to be 0). | |
)DOC"; | |
ONNX_OPERATOR_SET_SCHEMA( | |
DequantizeLinear, | |
10, | |
OpSchema() | |
.Input(0, "x", "N-D quantized input tensor to be de-quantized.", "T") | |
.Input( | |
1, | |
"x_scale", | |
"Scale for input 'x'. It's a scalar, which means a per-tensor/layer quantization.", | |
"tensor(float)") | |
.Input( | |
2, | |
"x_zero_point", | |
"Zero point for input 'x'. It's a scalar, which means a per-tensor/layer quantization. " | |
"It's optional. 0 is the default value when it's not specified.", | |
"T", | |
OpSchema::Optional) | |
.Output(0, "y", "N-D full precision output tensor. It has same shape as input 'x'.", "tensor(float)") | |
.TypeConstraint( | |
"T", | |
{"tensor(int8)", "tensor(uint8)", "tensor(int32)"}, | |
"Constrain 'x_zero_point' and 'x' to 8-bit/32-bit integer tensor.") | |
.SetDoc(DequantizeLinear_ver10_doc) | |
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) { | |
auto y_type = ctx.getOutputType(0); | |
// only float is supported | |
y_type->mutable_tensor_type()->set_elem_type(ONNX_NAMESPACE::TensorProto::FLOAT); | |
if (!hasInputShape(ctx, 0)) | |
return; | |
auto& input_shape = getInputShape(ctx, 0); | |
updateOutputShape(ctx, 0, input_shape); | |
})); | |
} // namespace ONNX_NAMESPACE | |