Spaces:
Sleeping
Sleeping
// Copyright (c) ONNX Project Contributors | |
/* | |
* SPDX-License-Identifier: Apache-2.0 | |
*/ | |
namespace ONNX_NAMESPACE { | |
inline void appendDimToTensorShapeProto(TensorShapeProto& tsp, const TensorShapeProto* input_data, int index) { | |
if (index >= input_data->dim_size() || index < -input_data->dim_size()) { | |
fail_shape_inference("indices must be in [-rank, rank-1]."); | |
} else { | |
*tsp.add_dim() = input_data->dim((index < 0) ? input_data->dim_size() + index : index); | |
} | |
} | |
// Returns true if the given axis attribute is 0 | |
inline bool axisIsZero(DataPropagationContext& ctx, bool defaultZero = false) { | |
auto axisAttr = ctx.getAttribute("axis"); | |
// if axis is not defined | |
if (!axisAttr) { | |
if (defaultZero) { | |
return true; | |
} else { | |
fail_shape_inference("Required attribute axis is missing"); | |
return false; | |
} | |
} | |
int axis = static_cast<int>(axisAttr->i()); | |
auto input_data_0 = ctx.getInputData(0); | |
if (input_data_0 == nullptr) { | |
return false; | |
} | |
int rank = input_data_0->dim_size(); | |
if (axis < -rank || axis >= rank) { | |
fail_shape_inference("axis must be in [-rank, rank-1]."); | |
return false; | |
} | |
if (axis < 0) { | |
axis += rank; | |
} | |
// Only supports axis = 0 since the data comes from Shape | |
return axis == 0; | |
} | |
inline void PropagateShapeDataFromInputToOutput(DataPropagationContext& ctx, int idx) { | |
// propagate input data | |
const auto input_data = ctx.getInputData(idx); | |
if (input_data != nullptr) { | |
TensorShapeProto tsp; | |
tsp.CopyFrom(*input_data); | |
ctx.addOutputData(0, std::move(tsp)); | |
} | |
} | |
inline void GatherOp13DataPropagator(DataPropagationContext& ctx) { | |
if (!axisIsZero(ctx, true)) { | |
return; | |
} | |
const auto input_data = ctx.getInputData(0); | |
if (input_data == nullptr) { | |
return; | |
} | |
const auto input_indices = ctx.getInputData(1); | |
if (input_data == nullptr || input_indices == nullptr) { | |
return; | |
} | |
TensorShapeProto tsp; | |
for (int i = 0; i < input_indices->dim_size(); ++i) { | |
if (input_indices->dim(i).has_dim_value()) { | |
appendDimToTensorShapeProto(tsp, input_data, input_indices->dim(i).dim_value()); | |
} else { | |
return; | |
} | |
} | |
if (tsp.dim_size() > 0) { | |
ctx.addOutputData(0, std::move(tsp)); | |
} | |
} | |
} // namespace ONNX_NAMESPACE | |