Spaces:
Sleeping
Sleeping
// Copyright (c) ONNX Project Contributors | |
// | |
// SPDX-License-Identifier: Apache-2.0 | |
namespace ONNX_NAMESPACE { | |
namespace py = pybind11; | |
using namespace pybind11::literals; | |
template <typename ProtoType> | |
static std::tuple<bool, py::bytes, py::bytes> Parse(const char* cstr) { | |
ProtoType proto{}; | |
OnnxParser parser(cstr); | |
auto status = parser.Parse(proto); | |
std::string out; | |
proto.SerializeToString(&out); | |
return std::make_tuple(status.IsOK(), py::bytes(status.ErrorMessage()), py::bytes(out)); | |
} | |
template <typename ProtoType> | |
static std::string ProtoBytesToText(const py::bytes& bytes) { | |
ProtoType proto{}; | |
ParseProtoFromPyBytes(&proto, bytes); | |
return ProtoToString(proto); | |
} | |
template <typename T, typename Ts = typename std::remove_const<T>::type> | |
std::pair<std::unique_ptr<Ts[]>, std::unordered_map<std::string, T*>> ParseProtoFromBytesMap( | |
std::unordered_map<std::string, py::bytes> bytesMap) { | |
std::unique_ptr<Ts[]> values(new Ts[bytesMap.size()]); | |
std::unordered_map<std::string, T*> result; | |
size_t i = 0; | |
for (auto kv : bytesMap) { | |
ParseProtoFromPyBytes(&values[i], kv.second); | |
result[kv.first] = &values[i]; | |
i++; | |
} | |
return std::make_pair(std::move(values), result); | |
} | |
std::unordered_map<std::string, py::bytes> CallNodeInferenceFunction( | |
OpSchema* schema, | |
const py::bytes& nodeBytes, | |
std::unordered_map<std::string, py::bytes> valueTypesByNameBytes, | |
std::unordered_map<std::string, py::bytes> inputDataByNameBytes, | |
std::unordered_map<std::string, py::bytes> inputSparseDataByNameBytes, | |
std::unordered_map<std::string, int> opsetImports, | |
const int irVersion) { | |
NodeProto node{}; | |
ParseProtoFromPyBytes(&node, nodeBytes); | |
// Early fail if node is badly defined - may throw ValidationError | |
schema->Verify(node); | |
// Convert arguments to C++ types, allocating memory | |
const auto& valueTypes = ParseProtoFromBytesMap<TypeProto>(valueTypesByNameBytes); | |
const auto& inputData = ParseProtoFromBytesMap<const TensorProto>(inputDataByNameBytes); | |
const auto& inputSparseData = ParseProtoFromBytesMap<const SparseTensorProto>(inputSparseDataByNameBytes); | |
if (opsetImports.empty()) { | |
opsetImports[schema->domain()] = schema->SinceVersion(); | |
} | |
shape_inference::GraphInferenceContext graphInferenceContext( | |
valueTypes.second, opsetImports, nullptr, {}, OpSchemaRegistry::Instance(), nullptr, irVersion); | |
// Construct inference context and get results - may throw InferenceError | |
// TODO: if it is desirable for infer_node_outputs to provide check_type, strict_mode, data_prop, | |
// we can add them to the Python API. For now we just assume the default options. | |
ShapeInferenceOptions options{false, 0, false}; | |
shape_inference::InferenceContextImpl ctx( | |
node, valueTypes.second, inputData.second, inputSparseData.second, options, nullptr, &graphInferenceContext); | |
schema->GetTypeAndShapeInferenceFunction()(ctx); | |
// Verify the inference succeeded - may also throw ValidationError | |
// Note that input types were not validated until now (except that their count was correct) | |
schema->CheckInputOutputType(ctx); | |
// Convert back into bytes returned to Python | |
std::unordered_map<std::string, py::bytes> typeProtoBytes; | |
for (size_t i = 0; i < ctx.allOutputTypes_.size(); i++) { | |
const auto& proto = ctx.allOutputTypes_[i]; | |
if (proto.IsInitialized()) { | |
std::string s; | |
proto.SerializeToString(&s); | |
typeProtoBytes[node.output(i)] = py::bytes(s); | |
} | |
} | |
return typeProtoBytes; | |
} | |
PYBIND11_MODULE(onnx_cpp2py_export, onnx_cpp2py_export) { | |
onnx_cpp2py_export.doc() = "Python interface to ONNX"; | |
onnx_cpp2py_export.attr("ONNX_ML") = py::bool_( | |
true | |
false | |
); | |
// Submodule `schema` | |
auto defs = onnx_cpp2py_export.def_submodule("defs"); | |
defs.doc() = "Schema submodule"; | |
py::register_exception<SchemaError>(defs, "SchemaError"); | |
py::class_<OpSchema> op_schema(defs, "OpSchema", "Schema of an operator."); | |
// Define the class enums first because they are used as default values in function definitions | |
py::enum_<OpSchema::FormalParameterOption>(op_schema, "FormalParameterOption") | |
.value("Single", OpSchema::Single) | |
.value("Optional", OpSchema::Optional) | |
.value("Variadic", OpSchema::Variadic); | |
py::enum_<OpSchema::DifferentiationCategory>(op_schema, "DifferentiationCategory") | |
.value("Unknown", OpSchema::Unknown) | |
.value("Differentiable", OpSchema::Differentiable) | |
.value("NonDifferentiable", OpSchema::NonDifferentiable); | |
py::enum_<AttributeProto::AttributeType>(op_schema, "AttrType") | |
.value("FLOAT", AttributeProto::FLOAT) | |
.value("INT", AttributeProto::INT) | |
.value("STRING", AttributeProto::STRING) | |
.value("TENSOR", AttributeProto::TENSOR) | |
.value("GRAPH", AttributeProto::GRAPH) | |
.value("FLOATS", AttributeProto::FLOATS) | |
.value("INTS", AttributeProto::INTS) | |
.value("STRINGS", AttributeProto::STRINGS) | |
.value("TENSORS", AttributeProto::TENSORS) | |
.value("GRAPHS", AttributeProto::GRAPHS) | |
.value("SPARSE_TENSOR", AttributeProto::SPARSE_TENSOR) | |
.value("SPARSE_TENSORS", AttributeProto::SPARSE_TENSORS) | |
.value("TYPE_PROTO", AttributeProto::TYPE_PROTO) | |
.value("TYPE_PROTOS", AttributeProto::TYPE_PROTOS); | |
py::enum_<OpSchema::SupportType>(op_schema, "SupportType") | |
.value("COMMON", OpSchema::SupportType::COMMON) | |
.value("EXPERIMENTAL", OpSchema::SupportType::EXPERIMENTAL); | |
py::class_<OpSchema::Attribute>(op_schema, "Attribute") | |
.def( | |
py::init([](std::string name, AttributeProto::AttributeType type, std::string description, bool required) { | |
// Construct an attribute. | |
// Use a lambda to swap the order of the arguments to match the Python API | |
return OpSchema::Attribute(std::move(name), std::move(description), type, required); | |
}), | |
py::arg("name"), | |
py::arg("type"), | |
py::arg("description") = "", | |
py::kw_only(), | |
py::arg("required") = true) | |
.def( | |
py::init([](std::string name, const py::object& default_value, std::string description) { | |
// Construct an attribute with a default value. | |
// Attributes with default values are not required | |
auto bytes = default_value.attr("SerializeToString")().cast<py::bytes>(); | |
AttributeProto proto{}; | |
ParseProtoFromPyBytes(&proto, bytes); | |
return OpSchema::Attribute(std::move(name), std::move(description), std::move(proto)); | |
}), | |
py::arg("name"), | |
py::arg("default_value"), // type: onnx.AttributeProto | |
py::arg("description") = "") | |
.def_readonly("name", &OpSchema::Attribute::name) | |
.def_readonly("description", &OpSchema::Attribute::description) | |
.def_readonly("type", &OpSchema::Attribute::type) | |
.def_property_readonly( | |
"_default_value", | |
[](OpSchema::Attribute* attr) -> py::bytes { | |
std::string out; | |
attr->default_value.SerializeToString(&out); | |
return out; | |
}) | |
.def_readonly("required", &OpSchema::Attribute::required); | |
py::class_<OpSchema::TypeConstraintParam>(op_schema, "TypeConstraintParam") | |
.def( | |
py::init<std::string, std::vector<std::string>, std::string>(), | |
py::arg("type_param_str"), | |
py::arg("allowed_type_strs"), | |
py::arg("description") = "") | |
.def_readonly("type_param_str", &OpSchema::TypeConstraintParam::type_param_str) | |
.def_readonly("allowed_type_strs", &OpSchema::TypeConstraintParam::allowed_type_strs) | |
.def_readonly("description", &OpSchema::TypeConstraintParam::description); | |
py::class_<OpSchema::FormalParameter>(op_schema, "FormalParameter") | |
.def( | |
py::init([](std::string name, | |
std::string type_str, | |
const std::string& description, | |
OpSchema::FormalParameterOption param_option, | |
bool is_homogeneous, | |
int min_arity, | |
OpSchema::DifferentiationCategory differentiation_category) { | |
// Use a lambda to swap the order of the arguments to match the Python API | |
return OpSchema::FormalParameter( | |
std::move(name), | |
description, | |
std::move(type_str), | |
param_option, | |
is_homogeneous, | |
min_arity, | |
differentiation_category); | |
}), | |
py::arg("name"), | |
py::arg("type_str"), | |
py::arg("description") = "", | |
py::kw_only(), | |
py::arg("param_option") = OpSchema::Single, | |
py::arg("is_homogeneous") = true, | |
py::arg("min_arity") = 1, | |
py::arg("differentiation_category") = OpSchema::DifferentiationCategory::Unknown) | |
.def_property_readonly("name", &OpSchema::FormalParameter::GetName) | |
.def_property_readonly("types", &OpSchema::FormalParameter::GetTypes) | |
.def_property_readonly("type_str", &OpSchema::FormalParameter::GetTypeStr) | |
.def_property_readonly("description", &OpSchema::FormalParameter::GetDescription) | |
.def_property_readonly("option", &OpSchema::FormalParameter::GetOption) | |
.def_property_readonly("is_homogeneous", &OpSchema::FormalParameter::GetIsHomogeneous) | |
.def_property_readonly("min_arity", &OpSchema::FormalParameter::GetMinArity) | |
.def_property_readonly("differentiation_category", &OpSchema::FormalParameter::GetDifferentiationCategory); | |
op_schema | |
.def( | |
py::init([](std::string name, | |
std::string domain, | |
int since_version, | |
std::string doc, | |
std::vector<OpSchema::FormalParameter> inputs, | |
std::vector<OpSchema::FormalParameter> outputs, | |
std::vector<std::tuple<std::string, std::vector<std::string>, std::string>> type_constraints, | |
std::vector<OpSchema::Attribute> attributes) { | |
auto self = OpSchema(); | |
self.SetName(std::move(name)).SetDomain(std::move(domain)).SinceVersion(since_version).SetDoc(doc); | |
// Add inputs and outputs | |
for (auto i = 0; i < inputs.size(); ++i) { | |
self.Input(i, std::move(inputs[i])); | |
} | |
for (auto i = 0; i < outputs.size(); ++i) { | |
self.Output(i, std::move(outputs[i])); | |
} | |
// Add type constraints | |
for (auto& type_constraint : type_constraints) { | |
std::string type_str; | |
std::vector<std::string> constraints; | |
std::string description; | |
tie(type_str, constraints, description) = std::move(type_constraint); | |
self.TypeConstraint(std::move(type_str), std::move(constraints), std::move(description)); | |
} | |
// Add attributes | |
for (auto& attribute : attributes) { | |
self.Attr(std::move(attribute)); | |
} | |
self.Finalize(); | |
return self; | |
}), | |
py::arg("name"), | |
py::arg("domain"), | |
py::arg("since_version"), | |
py::arg("doc") = "", | |
py::kw_only(), | |
py::arg("inputs") = std::vector<OpSchema::FormalParameter>{}, | |
py::arg("outputs") = std::vector<OpSchema::FormalParameter>{}, | |
py::arg("type_constraints") = std::vector<std::tuple< | |
std::string /* type_str */, | |
std::vector<std::string> /* constraints */, | |
std::string /* description */>>{}, | |
py::arg("attributes") = std::vector<OpSchema::Attribute>{}) | |
.def_property("name", &OpSchema::Name, [](OpSchema& self, const std::string& name) { self.SetName(name); }) | |
.def_property( | |
"domain", &OpSchema::domain, [](OpSchema& self, const std::string& domain) { self.SetDomain(domain); }) | |
.def_property("doc", &OpSchema::doc, [](OpSchema& self, const std::string& doc) { self.SetDoc(doc); }) | |
.def_property_readonly("file", &OpSchema::file) | |
.def_property_readonly("line", &OpSchema::line) | |
.def_property_readonly("support_level", &OpSchema::support_level) | |
.def_property_readonly("since_version", &OpSchema::since_version) | |
.def_property_readonly("deprecated", &OpSchema::deprecated) | |
.def_property_readonly("function_opset_versions", &OpSchema::function_opset_versions) | |
.def_property_readonly( | |
"context_dependent_function_opset_versions", &OpSchema::context_dependent_function_opset_versions) | |
.def_property_readonly( | |
"all_function_opset_versions", | |
[](OpSchema* op) -> std::vector<int> { | |
std::vector<int> all_function_opset_versions = op->function_opset_versions(); | |
std::vector<int> context_dependent_function_opset_versions = | |
op->context_dependent_function_opset_versions(); | |
all_function_opset_versions.insert( | |
all_function_opset_versions.end(), | |
context_dependent_function_opset_versions.begin(), | |
context_dependent_function_opset_versions.end()); | |
std::sort(all_function_opset_versions.begin(), all_function_opset_versions.end()); | |
all_function_opset_versions.erase( | |
std::unique(all_function_opset_versions.begin(), all_function_opset_versions.end()), | |
all_function_opset_versions.end()); | |
return all_function_opset_versions; | |
}) | |
.def_property_readonly("min_input", &OpSchema::min_input) | |
.def_property_readonly("max_input", &OpSchema::max_input) | |
.def_property_readonly("min_output", &OpSchema::min_output) | |
.def_property_readonly("max_output", &OpSchema::max_output) | |
.def_property_readonly("attributes", &OpSchema::attributes) | |
.def_property_readonly("inputs", &OpSchema::inputs) | |
.def_property_readonly("outputs", &OpSchema::outputs) | |
.def_property_readonly("has_type_and_shape_inference_function", &OpSchema::has_type_and_shape_inference_function) | |
.def_property_readonly("has_data_propagation_function", &OpSchema::has_data_propagation_function) | |
.def_property_readonly("type_constraints", &OpSchema::typeConstraintParams) | |
.def_static("is_infinite", [](int v) { return v == std::numeric_limits<int>::max(); }) | |
.def( | |
"_infer_node_outputs", | |
CallNodeInferenceFunction, | |
py::arg("nodeBytes"), | |
py::arg("valueTypesByNameBytes"), | |
py::arg("inputDataByNameBytes") = std::unordered_map<std::string, py::bytes>{}, | |
py::arg("inputSparseDataByNameBytes") = std::unordered_map<std::string, py::bytes>{}, | |
py::arg("opsetImports") = std::unordered_map<std::string, int>{}, | |
py::arg("irVersion") = int(IR_VERSION)) | |
.def_property_readonly("has_function", &OpSchema::HasFunction) | |
.def_property_readonly( | |
"_function_body", | |
[](OpSchema* op) -> py::bytes { | |
std::string bytes = ""; | |
if (op->HasFunction()) | |
op->GetFunction()->SerializeToString(&bytes); | |
return py::bytes(bytes); | |
}) | |
.def( | |
"get_function_with_opset_version", | |
[](OpSchema* op, int opset_version) -> py::bytes { | |
std::string bytes = ""; | |
const FunctionProto* function_proto = op->GetFunction(opset_version); | |
if (function_proto) { | |
function_proto->SerializeToString(&bytes); | |
} | |
return py::bytes(bytes); | |
}) | |
.def_property_readonly("has_context_dependent_function", &OpSchema::HasContextDependentFunction) | |
.def( | |
"get_context_dependent_function", | |
[](OpSchema* op, const py::bytes& bytes, const std::vector<py::bytes>& input_types_bytes) -> py::bytes { | |
NodeProto proto{}; | |
ParseProtoFromPyBytes(&proto, bytes); | |
std::string func_bytes = ""; | |
if (op->HasContextDependentFunction()) { | |
std::vector<TypeProto> input_types; | |
input_types.reserve(input_types_bytes.size()); | |
for (auto& type_bytes : input_types_bytes) { | |
TypeProto type_proto{}; | |
ParseProtoFromPyBytes(&type_proto, type_bytes); | |
input_types.push_back(type_proto); | |
} | |
FunctionBodyBuildContextImpl ctx(proto, input_types); | |
FunctionProto func_proto; | |
op->BuildContextDependentFunction(ctx, func_proto); | |
func_proto.SerializeToString(&func_bytes); | |
} | |
return py::bytes(func_bytes); | |
}) | |
.def( | |
"get_context_dependent_function_with_opset_version", | |
[](OpSchema* op, int opset_version, const py::bytes& bytes, const std::vector<py::bytes>& input_types_bytes) | |
-> py::bytes { | |
NodeProto proto{}; | |
ParseProtoFromPyBytes(&proto, bytes); | |
std::string func_bytes = ""; | |
if (op->HasContextDependentFunctionWithOpsetVersion(opset_version)) { | |
std::vector<TypeProto> input_types; | |
input_types.reserve(input_types_bytes.size()); | |
for (auto& type_bytes : input_types_bytes) { | |
TypeProto type_proto{}; | |
ParseProtoFromPyBytes(&type_proto, type_bytes); | |
input_types.push_back(type_proto); | |
} | |
FunctionBodyBuildContextImpl ctx(proto, input_types); | |
FunctionProto func_proto; | |
op->BuildContextDependentFunction(ctx, func_proto, opset_version); | |
func_proto.SerializeToString(&func_bytes); | |
} | |
return py::bytes(func_bytes); | |
}); | |
defs.def( | |
"has_schema", | |
[](const std::string& op_type, const std::string& domain) -> bool { | |
return OpSchemaRegistry::Schema(op_type, domain) != nullptr; | |
}, | |
"op_type"_a, | |
"domain"_a = ONNX_DOMAIN) | |
.def( | |
"has_schema", | |
[](const std::string& op_type, int max_inclusive_version, const std::string& domain) -> bool { | |
return OpSchemaRegistry::Schema(op_type, max_inclusive_version, domain) != nullptr; | |
}, | |
"op_type"_a, | |
"max_inclusive_version"_a, | |
"domain"_a = ONNX_DOMAIN) | |
.def( | |
"schema_version_map", | |
[]() -> std::unordered_map<std::string, std::pair<int, int>> { | |
return OpSchemaRegistry::DomainToVersionRange::Instance().Map(); | |
}) | |
.def( | |
"get_schema", | |
[](const std::string& op_type, const int max_inclusive_version, const std::string& domain) -> OpSchema { | |
const auto* schema = OpSchemaRegistry::Schema(op_type, max_inclusive_version, domain); | |
if (!schema) { | |
fail_schema( | |
"No schema registered for '" + op_type + "' version '" + std::to_string(max_inclusive_version) + | |
"' and domain '" + domain + "'!"); | |
} | |
return *schema; | |
}, | |
"op_type"_a, | |
"max_inclusive_version"_a, | |
"domain"_a = ONNX_DOMAIN, | |
"Return the schema of the operator *op_type* and for a specific version.") | |
.def( | |
"get_schema", | |
[](const std::string& op_type, const std::string& domain) -> OpSchema { | |
const auto* schema = OpSchemaRegistry::Schema(op_type, domain); | |
if (!schema) { | |
fail_schema("No schema registered for '" + op_type + "' and domain '" + domain + "'!"); | |
} | |
return *schema; | |
}, | |
"op_type"_a, | |
"domain"_a = ONNX_DOMAIN, | |
"Return the schema of the operator *op_type* and for a specific version.") | |
.def( | |
"get_all_schemas", | |
[]() -> const std::vector<OpSchema> { return OpSchemaRegistry::get_all_schemas(); }, | |
"Return the schema of all existing operators for the latest version.") | |
.def( | |
"get_all_schemas_with_history", | |
[]() -> const std::vector<OpSchema> { return OpSchemaRegistry::get_all_schemas_with_history(); }, | |
"Return the schema of all existing operators and all versions.") | |
.def( | |
"set_domain_to_version", | |
[](const std::string& domain, int min_version, int max_version, int last_release_version) { | |
auto& obj = OpSchemaRegistry::DomainToVersionRange::Instance(); | |
if (obj.Map().count(domain) == 0) { | |
obj.AddDomainToVersion(domain, min_version, max_version, last_release_version); | |
} else { | |
obj.UpdateDomainToVersion(domain, min_version, max_version, last_release_version); | |
} | |
}, | |
"domain"_a, | |
"min_version"_a, | |
"max_version"_a, | |
"last_release_version"_a = -1, | |
"Set the version range and last release version of the specified domain.") | |
.def( | |
"register_schema", | |
[](OpSchema schema) { RegisterSchema(std::move(schema), 0, true, true); }, | |
"schema"_a, | |
"Register a user provided OpSchema.") | |
.def( | |
"deregister_schema", | |
&DeregisterSchema, | |
"op_type"_a, | |
"version"_a, | |
"domain"_a, | |
"Deregister the specified OpSchema."); | |
// Submodule `checker` | |
auto checker = onnx_cpp2py_export.def_submodule("checker"); | |
checker.doc() = "Checker submodule"; | |
py::class_<checker::CheckerContext> checker_context(checker, "CheckerContext"); | |
checker_context.def(py::init<>()) | |
.def_property("ir_version", &checker::CheckerContext::get_ir_version, &checker::CheckerContext::set_ir_version) | |
.def_property( | |
"opset_imports", &checker::CheckerContext::get_opset_imports, &checker::CheckerContext::set_opset_imports); | |
py::class_<checker::LexicalScopeContext> lexical_scope_context(checker, "LexicalScopeContext"); | |
lexical_scope_context.def(py::init<>()); | |
py::register_exception<checker::ValidationError>(checker, "ValidationError"); | |
checker.def("check_value_info", [](const py::bytes& bytes, const checker::CheckerContext& ctx) -> void { | |
ValueInfoProto proto{}; | |
ParseProtoFromPyBytes(&proto, bytes); | |
checker::check_value_info(proto, ctx); | |
}); | |
checker.def("check_tensor", [](const py::bytes& bytes, const checker::CheckerContext& ctx) -> void { | |
TensorProto proto{}; | |
ParseProtoFromPyBytes(&proto, bytes); | |
checker::check_tensor(proto, ctx); | |
}); | |
checker.def("check_sparse_tensor", [](const py::bytes& bytes, const checker::CheckerContext& ctx) -> void { | |
SparseTensorProto proto{}; | |
ParseProtoFromPyBytes(&proto, bytes); | |
checker::check_sparse_tensor(proto, ctx); | |
}); | |
checker.def( | |
"check_attribute", | |
[](const py::bytes& bytes, | |
const checker::CheckerContext& ctx, | |
const checker::LexicalScopeContext& lex_ctx) -> void { | |
AttributeProto proto{}; | |
ParseProtoFromPyBytes(&proto, bytes); | |
checker::check_attribute(proto, ctx, lex_ctx); | |
}); | |
checker.def( | |
"check_node", | |
[](const py::bytes& bytes, | |
const checker::CheckerContext& ctx, | |
const checker::LexicalScopeContext& lex_ctx) -> void { | |
NodeProto proto{}; | |
ParseProtoFromPyBytes(&proto, bytes); | |
checker::check_node(proto, ctx, lex_ctx); | |
}); | |
checker.def( | |
"check_function", | |
[](const py::bytes& bytes, | |
const checker::CheckerContext& ctx, | |
const checker::LexicalScopeContext& lex_ctx) -> void { | |
FunctionProto proto{}; | |
ParseProtoFromPyBytes(&proto, bytes); | |
checker::check_function(proto, ctx, lex_ctx); | |
}); | |
checker.def( | |
"check_graph", | |
[](const py::bytes& bytes, | |
const checker::CheckerContext& ctx, | |
const checker::LexicalScopeContext& lex_ctx) -> void { | |
GraphProto proto{}; | |
ParseProtoFromPyBytes(&proto, bytes); | |
checker::check_graph(proto, ctx, lex_ctx); | |
}); | |
checker.def( | |
"check_model", | |
[](const py::bytes& bytes, bool full_check, bool skip_opset_compatibility_check, bool check_custom_domain) | |
-> void { | |
ModelProto proto{}; | |
ParseProtoFromPyBytes(&proto, bytes); | |
checker::check_model(proto, full_check, skip_opset_compatibility_check, check_custom_domain); | |
}, | |
"bytes"_a, | |
"full_check"_a = false, | |
"skip_opset_compatibility_check"_a = false, | |
"check_custom_domain"_a = false); | |
checker.def( | |
"check_model_path", | |
(void (*)( | |
const std::string& path, bool full_check, bool skip_opset_compatibility_check, bool check_custom_domain)) & | |
checker::check_model, | |
"path"_a, | |
"full_check"_a = false, | |
"skip_opset_compatibility_check"_a = false, | |
"check_custom_domain"_a = false); | |
checker.def("_resolve_external_data_location", &checker::resolve_external_data_location); | |
// Submodule `version_converter` | |
auto version_converter = onnx_cpp2py_export.def_submodule("version_converter"); | |
version_converter.doc() = "VersionConverter submodule"; | |
py::register_exception<ConvertError>(version_converter, "ConvertError"); | |
version_converter.def("convert_version", [](const py::bytes& bytes, py::int_ target) { | |
ModelProto proto{}; | |
ParseProtoFromPyBytes(&proto, bytes); | |
shape_inference::InferShapes(proto); | |
auto result = version_conversion::ConvertVersion(proto, target); | |
std::string out; | |
result.SerializeToString(&out); | |
return py::bytes(out); | |
}); | |
// Submodule `inliner` | |
auto inliner = onnx_cpp2py_export.def_submodule("inliner"); | |
inliner.doc() = "Inliner submodule"; | |
inliner.def("inline_local_functions", [](const py::bytes& bytes, bool convert_version) { | |
ModelProto model{}; | |
ParseProtoFromPyBytes(&model, bytes); | |
inliner::InlineLocalFunctions(model, convert_version); | |
std::string out; | |
model.SerializeToString(&out); | |
return py::bytes(out); | |
}); | |
// inline_selected_functions: Inlines all functions specified in function_ids, unless | |
// exclude is true, in which case it inlines all functions except those specified in | |
// function_ids. | |
inliner.def( | |
"inline_selected_functions", | |
[](const py::bytes& bytes, std::vector<std::pair<std::string, std::string>> function_ids, bool exclude) { | |
ModelProto model{}; | |
ParseProtoFromPyBytes(&model, bytes); | |
auto function_id_set = inliner::FunctionIdSet::Create(std::move(function_ids), exclude); | |
inliner::InlineSelectedFunctions(model, *function_id_set); | |
std::string out; | |
model.SerializeToString(&out); | |
return py::bytes(out); | |
}); | |
// Submodule `shape_inference` | |
auto shape_inference = onnx_cpp2py_export.def_submodule("shape_inference"); | |
shape_inference.doc() = "Shape Inference submodule"; | |
py::register_exception<InferenceError>(shape_inference, "InferenceError"); | |
shape_inference.def( | |
"infer_shapes", | |
[](const py::bytes& bytes, bool check_type, bool strict_mode, bool data_prop) { | |
ModelProto proto{}; | |
ParseProtoFromPyBytes(&proto, bytes); | |
ShapeInferenceOptions options{check_type, strict_mode == true ? 1 : 0, data_prop}; | |
shape_inference::InferShapes(proto, OpSchemaRegistry::Instance(), options); | |
std::string out; | |
proto.SerializeToString(&out); | |
return py::bytes(out); | |
}, | |
"bytes"_a, | |
"check_type"_a = false, | |
"strict_mode"_a = false, | |
"data_prop"_a = false); | |
shape_inference.def( | |
"infer_shapes_path", | |
[](const std::string& model_path, | |
const std::string& output_path, | |
bool check_type, | |
bool strict_mode, | |
bool data_prop) -> void { | |
ShapeInferenceOptions options{check_type, strict_mode == true ? 1 : 0, data_prop}; | |
shape_inference::InferShapes(model_path, output_path, OpSchemaRegistry::Instance(), options); | |
}); | |
shape_inference.def( | |
"infer_function_output_types", | |
[](const py::bytes& function_proto_bytes, | |
const std::vector<py::bytes> input_types_bytes, | |
const std::vector<py::bytes> attributes_bytes) -> std::vector<py::bytes> { | |
FunctionProto proto{}; | |
ParseProtoFromPyBytes(&proto, function_proto_bytes); | |
std::vector<TypeProto> input_types; | |
input_types.reserve(input_types_bytes.size()); | |
for (const py::bytes& bytes : input_types_bytes) { | |
TypeProto type; | |
ParseProtoFromPyBytes(&type, bytes); | |
input_types.push_back(type); | |
} | |
std::vector<AttributeProto> attributes; | |
attributes.reserve(attributes_bytes.size()); | |
for (const py::bytes& bytes : attributes_bytes) { | |
AttributeProto attr; | |
ParseProtoFromPyBytes(&attr, bytes); | |
attributes.push_back(attr); | |
} | |
std::vector<TypeProto> output_types = shape_inference::InferFunctionOutputTypes(proto, input_types, attributes); | |
std::vector<py::bytes> result; | |
result.reserve(output_types.size()); | |
for (auto& type_proto : output_types) { | |
std::string out; | |
type_proto.SerializeToString(&out); | |
result.push_back(py::bytes(out)); | |
} | |
return result; | |
}); | |
// Submodule `parser` | |
auto parser = onnx_cpp2py_export.def_submodule("parser"); | |
parser.doc() = "Parser submodule"; | |
parser.def("parse_model", Parse<ModelProto>); | |
parser.def("parse_graph", Parse<GraphProto>); | |
parser.def("parse_function", Parse<FunctionProto>); | |
parser.def("parse_node", Parse<NodeProto>); | |
// Submodule `printer` | |
auto printer = onnx_cpp2py_export.def_submodule("printer"); | |
printer.doc() = "Printer submodule"; | |
printer.def("model_to_text", ProtoBytesToText<ModelProto>); | |
printer.def("function_to_text", ProtoBytesToText<FunctionProto>); | |
printer.def("graph_to_text", ProtoBytesToText<GraphProto>); | |
} | |
} // namespace ONNX_NAMESPACE | |