Spaces:
Sleeping
Sleeping
import numpy as np | |
import pytest | |
from numpy.random import random | |
from numpy.testing import ( | |
assert_array_equal, assert_raises, assert_allclose | |
) | |
import threading | |
import queue | |
def fft1(x): | |
L = len(x) | |
phase = -2j*np.pi*(np.arange(L)/float(L)) | |
phase = np.arange(L).reshape(-1, 1) * phase | |
return np.sum(x*np.exp(phase), axis=1) | |
class TestFFTShift: | |
def test_fft_n(self): | |
assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0) | |
class TestFFT1D: | |
def test_identity(self): | |
maxlen = 512 | |
x = random(maxlen) + 1j*random(maxlen) | |
xr = random(maxlen) | |
for i in range(1, maxlen): | |
assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i], | |
atol=1e-12) | |
assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i), | |
xr[0:i], atol=1e-12) | |
def test_fft(self): | |
x = random(30) + 1j*random(30) | |
assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6) | |
assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=1e-6) | |
assert_allclose(fft1(x) / np.sqrt(30), | |
np.fft.fft(x, norm="ortho"), atol=1e-6) | |
assert_allclose(fft1(x) / 30., | |
np.fft.fft(x, norm="forward"), atol=1e-6) | |
def test_ifft(self, norm): | |
x = random(30) + 1j*random(30) | |
assert_allclose( | |
x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm), | |
atol=1e-6) | |
# Ensure we get the correct error message | |
with pytest.raises(ValueError, | |
match='Invalid number of FFT data points'): | |
np.fft.ifft([], norm=norm) | |
def test_fft2(self): | |
x = random((30, 20)) + 1j*random((30, 20)) | |
assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0), | |
np.fft.fft2(x), atol=1e-6) | |
assert_allclose(np.fft.fft2(x), | |
np.fft.fft2(x, norm="backward"), atol=1e-6) | |
assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20), | |
np.fft.fft2(x, norm="ortho"), atol=1e-6) | |
assert_allclose(np.fft.fft2(x) / (30. * 20.), | |
np.fft.fft2(x, norm="forward"), atol=1e-6) | |
def test_ifft2(self): | |
x = random((30, 20)) + 1j*random((30, 20)) | |
assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0), | |
np.fft.ifft2(x), atol=1e-6) | |
assert_allclose(np.fft.ifft2(x), | |
np.fft.ifft2(x, norm="backward"), atol=1e-6) | |
assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20), | |
np.fft.ifft2(x, norm="ortho"), atol=1e-6) | |
assert_allclose(np.fft.ifft2(x) * (30. * 20.), | |
np.fft.ifft2(x, norm="forward"), atol=1e-6) | |
def test_fftn(self): | |
x = random((30, 20, 10)) + 1j*random((30, 20, 10)) | |
assert_allclose( | |
np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0), | |
np.fft.fftn(x), atol=1e-6) | |
assert_allclose(np.fft.fftn(x), | |
np.fft.fftn(x, norm="backward"), atol=1e-6) | |
assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10), | |
np.fft.fftn(x, norm="ortho"), atol=1e-6) | |
assert_allclose(np.fft.fftn(x) / (30. * 20. * 10.), | |
np.fft.fftn(x, norm="forward"), atol=1e-6) | |
def test_ifftn(self): | |
x = random((30, 20, 10)) + 1j*random((30, 20, 10)) | |
assert_allclose( | |
np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0), | |
np.fft.ifftn(x), atol=1e-6) | |
assert_allclose(np.fft.ifftn(x), | |
np.fft.ifftn(x, norm="backward"), atol=1e-6) | |
assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10), | |
np.fft.ifftn(x, norm="ortho"), atol=1e-6) | |
assert_allclose(np.fft.ifftn(x) * (30. * 20. * 10.), | |
np.fft.ifftn(x, norm="forward"), atol=1e-6) | |
def test_rfft(self): | |
x = random(30) | |
for n in [x.size, 2*x.size]: | |
for norm in [None, 'backward', 'ortho', 'forward']: | |
assert_allclose( | |
np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)], | |
np.fft.rfft(x, n=n, norm=norm), atol=1e-6) | |
assert_allclose( | |
np.fft.rfft(x, n=n), | |
np.fft.rfft(x, n=n, norm="backward"), atol=1e-6) | |
assert_allclose( | |
np.fft.rfft(x, n=n) / np.sqrt(n), | |
np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6) | |
assert_allclose( | |
np.fft.rfft(x, n=n) / n, | |
np.fft.rfft(x, n=n, norm="forward"), atol=1e-6) | |
def test_irfft(self): | |
x = random(30) | |
assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6) | |
assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="backward"), | |
norm="backward"), atol=1e-6) | |
assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), | |
norm="ortho"), atol=1e-6) | |
assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="forward"), | |
norm="forward"), atol=1e-6) | |
def test_rfft2(self): | |
x = random((30, 20)) | |
assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6) | |
assert_allclose(np.fft.rfft2(x), | |
np.fft.rfft2(x, norm="backward"), atol=1e-6) | |
assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20), | |
np.fft.rfft2(x, norm="ortho"), atol=1e-6) | |
assert_allclose(np.fft.rfft2(x) / (30. * 20.), | |
np.fft.rfft2(x, norm="forward"), atol=1e-6) | |
def test_irfft2(self): | |
x = random((30, 20)) | |
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6) | |
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"), | |
norm="backward"), atol=1e-6) | |
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), | |
norm="ortho"), atol=1e-6) | |
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"), | |
norm="forward"), atol=1e-6) | |
def test_rfftn(self): | |
x = random((30, 20, 10)) | |
assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6) | |
assert_allclose(np.fft.rfftn(x), | |
np.fft.rfftn(x, norm="backward"), atol=1e-6) | |
assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10), | |
np.fft.rfftn(x, norm="ortho"), atol=1e-6) | |
assert_allclose(np.fft.rfftn(x) / (30. * 20. * 10.), | |
np.fft.rfftn(x, norm="forward"), atol=1e-6) | |
def test_irfftn(self): | |
x = random((30, 20, 10)) | |
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6) | |
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"), | |
norm="backward"), atol=1e-6) | |
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), | |
norm="ortho"), atol=1e-6) | |
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"), | |
norm="forward"), atol=1e-6) | |
def test_hfft(self): | |
x = random(14) + 1j*random(14) | |
x_herm = np.concatenate((random(1), x, random(1))) | |
x = np.concatenate((x_herm, x[::-1].conj())) | |
assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6) | |
assert_allclose(np.fft.hfft(x_herm), | |
np.fft.hfft(x_herm, norm="backward"), atol=1e-6) | |
assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30), | |
np.fft.hfft(x_herm, norm="ortho"), atol=1e-6) | |
assert_allclose(np.fft.hfft(x_herm) / 30., | |
np.fft.hfft(x_herm, norm="forward"), atol=1e-6) | |
def test_ihfft(self): | |
x = random(14) + 1j*random(14) | |
x_herm = np.concatenate((random(1), x, random(1))) | |
x = np.concatenate((x_herm, x[::-1].conj())) | |
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6) | |
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, | |
norm="backward"), norm="backward"), atol=1e-6) | |
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, | |
norm="ortho"), norm="ortho"), atol=1e-6) | |
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, | |
norm="forward"), norm="forward"), atol=1e-6) | |
def test_axes(self, op): | |
x = random((30, 20, 10)) | |
axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)] | |
for a in axes: | |
op_tr = op(np.transpose(x, a)) | |
tr_op = np.transpose(op(x, axes=a), a) | |
assert_allclose(op_tr, tr_op, atol=1e-6) | |
def test_all_1d_norm_preserving(self): | |
# verify that round-trip transforms are norm-preserving | |
x = random(30) | |
x_norm = np.linalg.norm(x) | |
n = x.size * 2 | |
func_pairs = [(np.fft.fft, np.fft.ifft), | |
(np.fft.rfft, np.fft.irfft), | |
# hfft: order so the first function takes x.size samples | |
# (necessary for comparison to x_norm above) | |
(np.fft.ihfft, np.fft.hfft), | |
] | |
for forw, back in func_pairs: | |
for n in [x.size, 2*x.size]: | |
for norm in [None, 'backward', 'ortho', 'forward']: | |
tmp = forw(x, n=n, norm=norm) | |
tmp = back(tmp, n=n, norm=norm) | |
assert_allclose(x_norm, | |
np.linalg.norm(tmp), atol=1e-6) | |
def test_dtypes(self, dtype): | |
# make sure that all input precisions are accepted and internally | |
# converted to 64bit | |
x = random(30).astype(dtype) | |
assert_allclose(np.fft.ifft(np.fft.fft(x)), x, atol=1e-6) | |
assert_allclose(np.fft.irfft(np.fft.rfft(x)), x, atol=1e-6) | |
def test_fft_with_order(dtype, order, fft): | |
# Check that FFT/IFFT produces identical results for C, Fortran and | |
# non contiguous arrays | |
rng = np.random.RandomState(42) | |
X = rng.rand(8, 7, 13).astype(dtype, copy=False) | |
# See discussion in pull/14178 | |
_tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps | |
if order == 'F': | |
Y = np.asfortranarray(X) | |
else: | |
# Make a non contiguous array | |
Y = X[::-1] | |
X = np.ascontiguousarray(X[::-1]) | |
if fft.__name__.endswith('fft'): | |
for axis in range(3): | |
X_res = fft(X, axis=axis) | |
Y_res = fft(Y, axis=axis) | |
assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol) | |
elif fft.__name__.endswith(('fft2', 'fftn')): | |
axes = [(0, 1), (1, 2), (0, 2)] | |
if fft.__name__.endswith('fftn'): | |
axes.extend([(0,), (1,), (2,), None]) | |
for ax in axes: | |
X_res = fft(X, axes=ax) | |
Y_res = fft(Y, axes=ax) | |
assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol) | |
else: | |
raise ValueError() | |
class TestFFTThreadSafe: | |
threads = 16 | |
input_shape = (800, 200) | |
def _test_mtsame(self, func, *args): | |
def worker(args, q): | |
q.put(func(*args)) | |
q = queue.Queue() | |
expected = func(*args) | |
# Spin off a bunch of threads to call the same function simultaneously | |
t = [threading.Thread(target=worker, args=(args, q)) | |
for i in range(self.threads)] | |
[x.start() for x in t] | |
[x.join() for x in t] | |
# Make sure all threads returned the correct value | |
for i in range(self.threads): | |
assert_array_equal(q.get(timeout=5), expected, | |
'Function returned wrong value in multithreaded context') | |
def test_fft(self): | |
a = np.ones(self.input_shape) * 1+0j | |
self._test_mtsame(np.fft.fft, a) | |
def test_ifft(self): | |
a = np.ones(self.input_shape) * 1+0j | |
self._test_mtsame(np.fft.ifft, a) | |
def test_rfft(self): | |
a = np.ones(self.input_shape) | |
self._test_mtsame(np.fft.rfft, a) | |
def test_irfft(self): | |
a = np.ones(self.input_shape) * 1+0j | |
self._test_mtsame(np.fft.irfft, a) | |