Spaces:
Sleeping
Sleeping
"""This module contains utility method for mobile model optimization and lint.""" | |
import torch | |
from enum import Enum | |
from torch._C import _MobileOptimizerType as MobileOptimizerType | |
from typing import Optional, Set, List, AnyStr | |
class LintCode(Enum): | |
BUNDLED_INPUT = 1 | |
REQUIRES_GRAD = 2 | |
DROPOUT = 3 | |
BATCHNORM = 4 | |
def optimize_for_mobile( | |
script_module: torch.jit.ScriptModule, | |
optimization_blocklist: Optional[Set[MobileOptimizerType]] = None, | |
preserved_methods: Optional[List[AnyStr]] = None, | |
backend: str = 'CPU') -> torch.jit.RecursiveScriptModule: | |
""" | |
Optimize a torch script module for mobile deployment. | |
Args: | |
script_module: An instance of torch script module with type of ScriptModule. | |
optimization_blocklist: A set with type of MobileOptimizerType. When set is not passed, | |
optimization method will run all the optimizer pass; otherwise, optimizer | |
method will run the optimization pass that is not included inside optimization_blocklist. | |
preserved_methods: A list of methods that needed to be preserved when freeze_module pass is invoked | |
backend: Device type to use for running the result model ('CPU'(default), 'Vulkan' or 'Metal'). | |
Returns: | |
A new optimized torch script module | |
""" | |
if not isinstance(script_module, torch.jit.ScriptModule): | |
raise TypeError( | |
f'Got {type(script_module)}, but ScriptModule is expected.') | |
if optimization_blocklist is None: | |
optimization_blocklist = set() | |
if preserved_methods is None: | |
preserved_methods = [] | |
# Convert potential byte arrays into strings (if there is any) to pass type checking | |
# Here we use a new name as assigning it back to preserved_methods will invoke | |
# mypy errors (i.e. List[AnyStr] = List[str]) | |
preserved_methods_str: List[str] = [str(method) for method in preserved_methods] | |
bundled_inputs_attributes = _get_bundled_inputs_preserved_attributes(script_module, preserved_methods_str) | |
if all(hasattr(script_module, method) for method in bundled_inputs_attributes): | |
preserved_methods_str = list(set(preserved_methods_str + bundled_inputs_attributes)) | |
non_exist_methods = [] | |
for method in preserved_methods_str: | |
if not hasattr(script_module, method): | |
non_exist_methods.append(method) | |
if non_exist_methods: | |
raise AttributeError( | |
f"The following methods to preserve do not exist in script_module: {', '.join(non_exist_methods)}") | |
backend = backend.lower() | |
if backend == 'cpu': | |
optimized_cpp_module = torch._C._jit_pass_optimize_for_mobile( | |
script_module._c, | |
optimization_blocklist, | |
preserved_methods_str) | |
elif backend == 'vulkan': | |
optimized_cpp_module = torch._C._jit_pass_vulkan_optimize_for_mobile( | |
script_module._c, | |
optimization_blocklist, | |
preserved_methods_str) | |
elif backend == 'metal': | |
optimized_cpp_module = torch._C._jit_pass_metal_optimize_for_mobile(script_module._c, preserved_methods_str) | |
else: | |
raise TypeError("Unknown backend, must be one of 'CPU', 'Vulkan' or 'Metal'") | |
return torch.jit._recursive.wrap_cpp_module(optimized_cpp_module) | |
def generate_mobile_module_lints(script_module: torch.jit.ScriptModule): | |
""" | |
Generate a list of lints for a given torch script module. | |
Args: | |
script_module: An instance of torch script module with type of ScriptModule. | |
Returns: | |
lint_map: A list of dictionary that contains modules lints | |
""" | |
if not isinstance(script_module, torch.jit.ScriptModule): | |
raise TypeError( | |
f'Got {type(script_module)}, but ScriptModule is expected.') | |
lint_list = [] | |
if not hasattr(script_module, "_generate_bundled_inputs_for_forward"): | |
lint_list.append({"name": LintCode.BUNDLED_INPUT.name, "message": "No bundled input for forward, please add bundled inputs " | |
"before saving the module using torch.utils.bundled_inputs.augment_model_with_bundled_inputs."}) | |
for name, param in script_module.named_parameters(): | |
if param.requires_grad: | |
lint_list.append({"name": LintCode.REQUIRES_GRAD.name, "message": f"Param {name} requires grad, " | |
"please set torch.no_grad() to reduce memory usage and improve computation speed during " | |
"inference phase."}) | |
op_names = torch.jit.export_opnames(script_module) | |
for op_name in op_names: | |
if "dropout" in op_name: | |
lint_list.append({"name": LintCode.DROPOUT.name, "message": "Operator {} exists, remember to call eval() before " | |
"saving the module.and call torch.utils.mobile_optimizer.optimize_for_mobile to drop dropout " | |
"operator.".format(op_name)}) | |
if "batch_norm" in op_name: | |
lint_list.append({"name": LintCode.BATCHNORM.name, "message": "Operator {} exists, remember to call eval() before " | |
"saving the module and call torch.utils.mobile_optimizer.optimize_for_mobile to drop batch_norm " | |
"operator.".format(op_name)}) | |
return lint_list | |
def _get_bundled_inputs_preserved_attributes(script_module: torch.jit.ScriptModule, preserved_methods: List[str]) -> List[str]: | |
bundled_inputs_attributes = [] | |
# Has bundled inputs for forward | |
if hasattr(script_module, 'get_all_bundled_inputs'): | |
bundled_inputs_attributes.append('get_all_bundled_inputs') | |
bundled_inputs_attributes.append('get_num_bundled_inputs') | |
# Bundled inputs in module after the change that introduced bundled inputs for multiple functions | |
if hasattr(script_module, 'get_bundled_inputs_functions_and_info'): | |
bundled_inputs_attributes.append('get_bundled_inputs_functions_and_info') | |
all_info = script_module.get_bundled_inputs_functions_and_info() | |
for function_name in all_info: | |
if function_name not in preserved_methods: | |
bundled_inputs_attributes.append(function_name) | |
bundled_inputs_attributes.append("get_all_bundled_inputs_for_" + function_name) | |
bundled_inputs_attributes.append("_bundled_inputs_deflated_" + function_name) | |
return bundled_inputs_attributes | |