Spaces:
Sleeping
Sleeping
| import gzip | |
| import json | |
| import os | |
| import tempfile | |
| from abc import ABC, abstractmethod | |
| from enum import Enum | |
| from functools import partial | |
| from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple | |
| from warnings import warn | |
| from typing_extensions import Self | |
| import torch | |
| import torch.autograd.profiler as prof | |
| from torch._C import _get_privateuse1_backend_name | |
| from torch._C._profiler import ( | |
| _add_execution_trace_observer, | |
| _disable_execution_trace_observer, | |
| _enable_execution_trace_observer, | |
| _ExperimentalConfig, | |
| _remove_execution_trace_observer, | |
| ) | |
| from torch.autograd import kineto_available, ProfilerActivity | |
| from torch.profiler._memory_profiler import MemoryProfile, MemoryProfileTimeline | |
| __all__ = [ | |
| "supported_activities", | |
| "ProfilerAction", | |
| "schedule", | |
| "tensorboard_trace_handler", | |
| "profile", | |
| "ExecutionTraceObserver", | |
| ] | |
| PROFILER_STEP_NAME = "ProfilerStep" | |
| def supported_activities(): | |
| """ | |
| Returns a set of supported profiler tracing activities. | |
| Note: profiler uses CUPTI library to trace on-device CUDA kernels. | |
| In case when CUDA is enabled but CUPTI is not available, passing | |
| ``ProfilerActivity.CUDA`` to profiler results in using the legacy CUDA | |
| profiling code (same as in the legacy ``torch.autograd.profiler``). | |
| This, in turn, results in including CUDA time in the profiler table output, | |
| but not in the JSON trace. | |
| """ | |
| return torch.autograd._supported_activities() | |
| class _ITraceObserver(ABC): | |
| """Abstract interface for a Trace observer. | |
| This satisfies 3 methods: start, stop and cleanup""" | |
| def start(self): | |
| pass | |
| def stop(self): | |
| pass | |
| def cleanup(self): | |
| pass | |
| class _KinetoProfile: | |
| """Low-level profiler wrap the autograd profile | |
| Args: | |
| activities (iterable): list of activity groups (CPU, CUDA) to use in profiling, supported values: | |
| ``torch.profiler.ProfilerActivity.CPU``, ``torch.profiler.ProfilerActivity.CUDA``. | |
| Default value: ProfilerActivity.CPU and (when available) ProfilerActivity.CUDA. | |
| record_shapes (bool): save information about operator's input shapes. | |
| profile_memory (bool): track tensor memory allocation/deallocation (see ``export_memory_timeline`` | |
| for more details). | |
| with_stack (bool): record source information (file and line number) for the ops. | |
| with_flops (bool): use formula to estimate the FLOPS of specific operators | |
| (matrix multiplication and 2D convolution). | |
| with_modules (bool): record module hierarchy (including function names) | |
| corresponding to the callstack of the op. e.g. If module A's forward call's | |
| module B's forward which contains an aten::add op, | |
| then aten::add's module hierarchy is A.B | |
| Note that this support exist, at the moment, only for TorchScript models | |
| and not eager mode models. | |
| experimental_config (_ExperimentalConfig) : A set of experimental options | |
| used by profiler libraries like Kineto. Note, backward compatibility is not guaranteed. | |
| execution_trace_observer (ExecutionTraceObserver) : A PyTorch Execution Trace Observer object. | |
| `PyTorch Execution Traces <https://arxiv.org/pdf/2305.14516.pdf>`__ offer a graph based | |
| representation of AI/ML workloads and enable replay benchmarks, simulators, and emulators. | |
| When this argument is included the observer start() and stop() will be called for the | |
| same time window as PyTorch profiler. | |
| .. note:: | |
| This API is experimental and subject to change in the future. | |
| Enabling shape and stack tracing results in additional overhead. | |
| When record_shapes=True is specified, profiler will temporarily hold references to the tensors; | |
| that may further prevent certain optimizations that depend on the reference count and introduce | |
| extra tensor copies. | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| activities: Optional[Iterable[ProfilerActivity]] = None, | |
| record_shapes: bool = False, | |
| profile_memory: bool = False, | |
| with_stack: bool = False, | |
| with_flops: bool = False, | |
| with_modules: bool = False, | |
| experimental_config: Optional[_ExperimentalConfig] = None, | |
| execution_trace_observer: Optional[_ITraceObserver] = None, | |
| ): | |
| self.activities = set(activities) if activities else supported_activities() | |
| self.record_shapes = record_shapes | |
| self.with_flops = with_flops | |
| self.profile_memory = profile_memory | |
| self.with_stack = with_stack | |
| self.with_modules = with_modules | |
| self.experimental_config = experimental_config | |
| self.execution_trace_observer = execution_trace_observer | |
| self.profiler: Optional[prof.profile] = None | |
| self.mem_tl: Optional[MemoryProfileTimeline] = None | |
| self.use_device = None | |
| privateuse1_backend = _get_privateuse1_backend_name() | |
| if privateuse1_backend != "privateuseone": | |
| self.use_device = privateuse1_backend | |
| # user-defined metadata to be amended to the trace | |
| self.preset_metadata: Dict[str, str] = dict() | |
| def start(self): | |
| self.prepare_trace() | |
| self.start_trace() | |
| def stop(self): | |
| self.stop_trace() | |
| def prepare_trace(self): | |
| self.profiler = prof.profile( | |
| use_cuda=(ProfilerActivity.CUDA in self.activities), | |
| use_cpu=(ProfilerActivity.CPU in self.activities), | |
| use_mtia=(ProfilerActivity.MTIA in self.activities), | |
| use_device=None, | |
| record_shapes=self.record_shapes, | |
| with_flops=self.with_flops, | |
| profile_memory=self.profile_memory, | |
| with_stack=self.with_stack, | |
| with_modules=self.with_modules, | |
| use_kineto=True, | |
| experimental_config=self.experimental_config, | |
| ) | |
| self.profiler._prepare_trace() | |
| def start_trace(self): | |
| if self.execution_trace_observer: | |
| self.execution_trace_observer.start() | |
| assert self.profiler is not None | |
| self.profiler._start_trace() | |
| if self.profile_memory: | |
| self.add_metadata_json("profile_memory", "1") | |
| if self.with_stack: | |
| self.add_metadata_json("with_stack", "1") | |
| if self.record_shapes: | |
| self.add_metadata_json("record_shapes", "1") | |
| if self.with_modules: | |
| self.add_metadata_json("with_modules", "1") | |
| if self.with_flops: | |
| self.add_metadata_json("with_flops", "1") | |
| if kineto_available(): | |
| dist_info = self._get_distributed_info() | |
| if dist_info: | |
| self.add_metadata_json("distributedInfo", json.dumps(dist_info)) | |
| if hasattr(torch, "_inductor"): | |
| import torch._inductor.config as inductor_config | |
| if inductor_config.triton.cudagraphs: | |
| os.environ["DISABLE_CUPTI_LAZY_REINIT"] = "1" | |
| self.add_metadata_json("DISABLE_CUPTI_LAZY_REINIT", "1") | |
| # FIXME: CUDA Graph does not work well with CUPTI teardown. | |
| # 1) crashes on 1st lazy CUPTI re-init after teardown (CUDA 11) | |
| # 2) crashes on 2nd non-lazy CUPTI re-init after teardown (CUDA 12) | |
| # Workaround: turn off CUPTI teardown when using CUDA Graphs. | |
| os.environ["TEARDOWN_CUPTI"] = "0" | |
| # Insert the preset user metadata to the trace | |
| for k, v in self.preset_metadata.items(): | |
| self.add_metadata_json(k, v) | |
| def stop_trace(self): | |
| if self.execution_trace_observer: | |
| self.execution_trace_observer.stop() | |
| assert self.profiler is not None | |
| self.profiler.__exit__(None, None, None) | |
| def export_chrome_trace(self, path: str): | |
| """ | |
| Exports the collected trace in Chrome JSON format. | |
| """ | |
| assert self.profiler | |
| if path.endswith(".gz"): | |
| fp = tempfile.NamedTemporaryFile("w+t", suffix=".json", delete=False) | |
| fp.close() | |
| retvalue = self.profiler.export_chrome_trace(fp.name) | |
| with open(fp.name) as fin: | |
| with gzip.open(path, "wt") as fout: | |
| fout.writelines(fin) | |
| os.remove(fp.name) | |
| return retvalue | |
| else: | |
| return self.profiler.export_chrome_trace(path) | |
| def export_stacks(self, path: str, metric: str = "self_cpu_time_total"): | |
| """Save stack traces in a file in a format suitable for visualization. | |
| Args: | |
| path (str): save stacks file to this location; | |
| metric (str): metric to use: "self_cpu_time_total" or "self_cuda_time_total" | |
| .. note:: | |
| Example of using FlameGraph tool: | |
| - git clone https://github.com/brendangregg/FlameGraph | |
| - cd FlameGraph | |
| - ./flamegraph.pl --title "CPU time" --countname "us." profiler.stacks > perf_viz.svg | |
| """ | |
| assert self.profiler | |
| return self.profiler.export_stacks(path, metric) | |
| def key_averages( | |
| self, group_by_input_shape: bool = False, group_by_stack_n: int = 0 | |
| ): | |
| """Averages events, grouping them by operator name and (optionally) input shapes and | |
| stack. | |
| .. note:: | |
| To use shape/stack functionality make sure to set record_shapes/with_stack | |
| when creating profiler context manager. | |
| """ | |
| assert self.profiler | |
| return self.profiler.key_averages(group_by_input_shape, group_by_stack_n) | |
| def events(self): | |
| """ | |
| Returns the list of unaggregated profiler events, | |
| to be used in the trace callback or after the profiling is finished | |
| """ | |
| assert self.profiler | |
| return self.profiler.function_events | |
| def add_metadata(self, key: str, value: str): | |
| """ | |
| Adds a user defined metadata with a string key and a string value | |
| into the trace file | |
| """ | |
| wrapped_value = '"' + value.replace('"', '\\"') + '"' | |
| torch.autograd._add_metadata_json(key, wrapped_value) | |
| def add_metadata_json(self, key: str, value: str): | |
| """ | |
| Adds a user defined metadata with a string key and a valid json value | |
| into the trace file | |
| """ | |
| torch.autograd._add_metadata_json(key, value) | |
| def preset_metadata_json(self, key: str, value: str): | |
| """ | |
| Preset a user defined metadata when the profiler is not started | |
| and added into the trace file later. | |
| Metadata is in the format of a string key and a valid json value | |
| """ | |
| self.preset_metadata[key] = value | |
| def _get_distributed_info(self): | |
| import torch.distributed as dist | |
| if not dist.is_available() or not dist.is_initialized(): | |
| return None | |
| backend = dist.get_backend() | |
| dist_info = { | |
| "backend": backend, | |
| "rank": dist.get_rank(), | |
| "world_size": dist.get_world_size(), | |
| "pg_count": dist.get_pg_count(), | |
| "pg_config": dist.distributed_c10d._get_all_pg_configs(), | |
| } | |
| if backend == "nccl": | |
| nccl_version = torch.cuda.nccl.version() | |
| dist_info["nccl_version"] = ".".join(str(v) for v in nccl_version) | |
| return dist_info | |
| def _memory_profile(self) -> MemoryProfile: | |
| required = ("record_shapes", "profile_memory", "with_stack") | |
| missing = [f"{i}=True" for i in required if not getattr(self, i)] | |
| if missing: | |
| raise ValueError(f"{', '.join(missing)} required for memory profiling.") | |
| assert self.profiler is not None and self.profiler.kineto_results is not None | |
| return MemoryProfile(self.profiler.kineto_results) | |
| def export_memory_timeline(self, path: str, device: Optional[str] = None) -> None: | |
| """Export memory event information from the profiler collected | |
| tree for a given device, and export a timeline plot. There are 3 | |
| exportable files using ``export_memory_timeline``, each controlled by the | |
| ``path``'s suffix. | |
| - For an HTML compatible plot, use the suffix ``.html``, and a memory timeline | |
| plot will be embedded as a PNG file in the HTML file. | |
| - For plot points consisting of ``[times, [sizes by category]]``, where | |
| ``times`` are timestamps and ``sizes`` are memory usage for each category. | |
| The memory timeline plot will be saved a JSON (``.json``) or gzipped JSON | |
| (``.json.gz``) depending on the suffix. | |
| - For raw memory points, use the suffix ``.raw.json.gz``. Each raw memory | |
| event will consist of ``(timestamp, action, numbytes, category)``, where | |
| ``action`` is one of ``[PREEXISTING, CREATE, INCREMENT_VERSION, DESTROY]``, | |
| and ``category`` is one of the enums from | |
| ``torch.profiler._memory_profiler.Category``. | |
| Output: Memory timeline written as gzipped JSON, JSON, or HTML. | |
| """ | |
| # Default to device 0, if unset. Fallback on cpu. | |
| if device is None and self.use_device and self.use_device != "cuda": | |
| device = self.use_device + ":0" | |
| if device is None: | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| # Construct the memory timeline plot data | |
| self.mem_tl = MemoryProfileTimeline(self._memory_profile()) | |
| # Depending on the file suffix, save the data as json.gz or json. | |
| # For html, we can embed the image into an HTML file. | |
| if path.endswith(".html"): | |
| self.mem_tl.export_memory_timeline_html(path, device) | |
| elif path.endswith(".gz"): | |
| fp = tempfile.NamedTemporaryFile("w+t", suffix=".json", delete=False) | |
| fp.close() | |
| if path.endswith("raw.json.gz"): | |
| self.mem_tl.export_memory_timeline_raw(fp.name, device) | |
| else: | |
| self.mem_tl.export_memory_timeline(fp.name, device) | |
| with open(fp.name) as fin: | |
| with gzip.open(path, "wt") as fout: | |
| fout.writelines(fin) | |
| os.remove(fp.name) | |
| else: | |
| self.mem_tl.export_memory_timeline(path, device) | |
| class ProfilerAction(Enum): | |
| """ | |
| Profiler actions that can be taken at the specified intervals | |
| """ | |
| NONE = 0 | |
| WARMUP = 1 | |
| RECORD = 2 | |
| RECORD_AND_SAVE = 3 | |
| def schedule( | |
| *, wait: int, warmup: int, active: int, repeat: int = 0, skip_first: int = 0 | |
| ) -> Callable: | |
| """ | |
| Returns a callable that can be used as profiler ``schedule`` argument. The profiler will skip | |
| the first ``skip_first`` steps, then wait for ``wait`` steps, then do the warmup for the next ``warmup`` steps, | |
| then do the active recording for the next ``active`` steps and then repeat the cycle starting with ``wait`` steps. | |
| The optional number of cycles is specified with the ``repeat`` parameter, the zero value means that | |
| the cycles will continue until the profiling is finished. | |
| """ | |
| def schedule_fn(step: int) -> ProfilerAction: | |
| assert step >= 0 | |
| if step < skip_first: | |
| return ProfilerAction.NONE | |
| else: | |
| step -= skip_first | |
| num_steps = wait + warmup + active | |
| if repeat > 0 and step / num_steps >= repeat: | |
| return ProfilerAction.NONE | |
| mod_step = step % num_steps | |
| if mod_step < wait: | |
| return ProfilerAction.NONE | |
| elif mod_step < wait + warmup: | |
| return ProfilerAction.WARMUP | |
| else: | |
| return ( | |
| ProfilerAction.RECORD | |
| if mod_step < num_steps - 1 | |
| else ProfilerAction.RECORD_AND_SAVE | |
| ) | |
| assert ( | |
| wait >= 0 and warmup >= 0 and active > 0 and repeat >= 0 and skip_first >= 0 | |
| ), "Invalid profiler schedule arguments" | |
| if warmup == 0: | |
| warn("Profiler won't be using warmup, this can skew profiler results") | |
| return schedule_fn | |
| def _default_schedule_fn(_: int) -> ProfilerAction: | |
| """ | |
| Default profiler behavior - immediately starts recording the events, | |
| keeps doing it on every profiler step. | |
| """ | |
| return ProfilerAction.RECORD | |
| def tensorboard_trace_handler( | |
| dir_name: str, worker_name: Optional[str] = None, use_gzip: bool = False | |
| ): | |
| """ | |
| Outputs tracing files to directory of ``dir_name``, then that directory can be | |
| directly delivered to tensorboard as logdir. | |
| ``worker_name`` should be unique for each worker in distributed scenario, | |
| it will be set to '[hostname]_[pid]' by default. | |
| """ | |
| import os | |
| import socket | |
| import time | |
| def handler_fn(prof) -> None: | |
| nonlocal worker_name | |
| if not os.path.isdir(dir_name): | |
| try: | |
| os.makedirs(dir_name, exist_ok=True) | |
| except Exception as e: | |
| raise RuntimeError("Can't create directory: " + dir_name) from e | |
| if not worker_name: | |
| worker_name = f"{socket.gethostname()}_{os.getpid()}" | |
| # Use nanosecond here to avoid naming clash when exporting the trace | |
| file_name = f"{worker_name}.{time.time_ns()}.pt.trace.json" | |
| if use_gzip: | |
| file_name = file_name + ".gz" | |
| prof.export_chrome_trace(os.path.join(dir_name, file_name)) | |
| return handler_fn | |
| class profile(_KinetoProfile): | |
| """Profiler context manager. | |
| Args: | |
| activities (iterable): list of activity groups (CPU, CUDA) to use in profiling, supported values: | |
| ``torch.profiler.ProfilerActivity.CPU``, ``torch.profiler.ProfilerActivity.CUDA``. | |
| Default value: ProfilerActivity.CPU and (when available) ProfilerActivity.CUDA. | |
| schedule (Callable): callable that takes step (int) as a single parameter and returns | |
| ``ProfilerAction`` value that specifies the profiler action to perform at each step. | |
| on_trace_ready (Callable): callable that is called at each step when ``schedule`` | |
| returns ``ProfilerAction.RECORD_AND_SAVE`` during the profiling. | |
| record_shapes (bool): save information about operator's input shapes. | |
| profile_memory (bool): track tensor memory allocation/deallocation. | |
| with_stack (bool): record source information (file and line number) for the ops. | |
| with_flops (bool): use formula to estimate the FLOPs (floating point operations) of specific operators | |
| (matrix multiplication and 2D convolution). | |
| with_modules (bool): record module hierarchy (including function names) | |
| corresponding to the callstack of the op. e.g. If module A's forward call's | |
| module B's forward which contains an aten::add op, | |
| then aten::add's module hierarchy is A.B | |
| Note that this support exist, at the moment, only for TorchScript models | |
| and not eager mode models. | |
| experimental_config (_ExperimentalConfig) : A set of experimental options | |
| used for Kineto library features. Note, backward compatibility is not guaranteed. | |
| execution_trace_observer (ExecutionTraceObserver) : A PyTorch Execution Trace Observer object. | |
| `PyTorch Execution Traces <https://arxiv.org/pdf/2305.14516.pdf>`__ offer a graph based | |
| representation of AI/ML workloads and enable replay benchmarks, simulators, and emulators. | |
| When this argument is included the observer start() and stop() will be called for the | |
| same time window as PyTorch profiler. See the examples section below for a code sample. | |
| use_cuda (bool): | |
| .. deprecated:: 1.8.1 | |
| use ``activities`` instead. | |
| .. note:: | |
| Use :func:`~torch.profiler.schedule` to generate the callable schedule. | |
| Non-default schedules are useful when profiling long training jobs | |
| and allow the user to obtain multiple traces at the different iterations | |
| of the training process. | |
| The default schedule simply records all the events continuously for the | |
| duration of the context manager. | |
| .. note:: | |
| Use :func:`~torch.profiler.tensorboard_trace_handler` to generate result files for TensorBoard: | |
| ``on_trace_ready=torch.profiler.tensorboard_trace_handler(dir_name)`` | |
| After profiling, result files can be found in the specified directory. Use the command: | |
| ``tensorboard --logdir dir_name`` | |
| to see the results in TensorBoard. | |
| For more information, see | |
| `PyTorch Profiler TensorBoard Plugin <https://github.com/pytorch/kineto/tree/master/tb_plugin>`__ | |
| .. note:: | |
| Enabling shape and stack tracing results in additional overhead. | |
| When record_shapes=True is specified, profiler will temporarily hold references to the tensors; | |
| that may further prevent certain optimizations that depend on the reference count and introduce | |
| extra tensor copies. | |
| Examples: | |
| .. code-block:: python | |
| with torch.profiler.profile( | |
| activities=[ | |
| torch.profiler.ProfilerActivity.CPU, | |
| torch.profiler.ProfilerActivity.CUDA, | |
| ] | |
| ) as p: | |
| code_to_profile() | |
| print(p.key_averages().table( | |
| sort_by="self_cuda_time_total", row_limit=-1)) | |
| Using the profiler's ``schedule``, ``on_trace_ready`` and ``step`` functions: | |
| .. code-block:: python | |
| # Non-default profiler schedule allows user to turn profiler on and off | |
| # on different iterations of the training loop; | |
| # trace_handler is called every time a new trace becomes available | |
| def trace_handler(prof): | |
| print(prof.key_averages().table( | |
| sort_by="self_cuda_time_total", row_limit=-1)) | |
| # prof.export_chrome_trace("/tmp/test_trace_" + str(prof.step_num) + ".json") | |
| with torch.profiler.profile( | |
| activities=[ | |
| torch.profiler.ProfilerActivity.CPU, | |
| torch.profiler.ProfilerActivity.CUDA, | |
| ], | |
| # In this example with wait=1, warmup=1, active=2, repeat=1, | |
| # profiler will skip the first step/iteration, | |
| # start warming up on the second, record | |
| # the third and the forth iterations, | |
| # after which the trace will become available | |
| # and on_trace_ready (when set) is called; | |
| # the cycle repeats starting with the next step | |
| schedule=torch.profiler.schedule( | |
| wait=1, | |
| warmup=1, | |
| active=2, | |
| repeat=1), | |
| on_trace_ready=trace_handler | |
| # on_trace_ready=torch.profiler.tensorboard_trace_handler('./log') | |
| # used when outputting for tensorboard | |
| ) as p: | |
| for iter in range(N): | |
| code_iteration_to_profile(iter) | |
| # send a signal to the profiler that the next iteration has started | |
| p.step() | |
| The following sample shows how to setup up an Execution Trace Observer (`execution_trace_observer`) | |
| .. code-block:: python | |
| with torch.profiler.profile( | |
| ... | |
| execution_trace_observer=( | |
| ExecutionTraceObserver().register_callback("./execution_trace.json") | |
| ), | |
| ) as p: | |
| for iter in range(N): | |
| code_iteration_to_profile(iter) | |
| p.step() | |
| You can also refer to test_execution_trace_with_kineto() in tests/profiler/test_profiler.py. | |
| Note: One can also pass any object satisfying the _ITraceObserver interface. | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| activities: Optional[Iterable[ProfilerActivity]] = None, | |
| schedule: Optional[Callable[[int], ProfilerAction]] = None, | |
| on_trace_ready: Optional[Callable[..., Any]] = None, | |
| record_shapes: bool = False, | |
| profile_memory: bool = False, | |
| with_stack: bool = False, | |
| with_flops: bool = False, | |
| with_modules: bool = False, | |
| experimental_config: Optional[_ExperimentalConfig] = None, | |
| execution_trace_observer: Optional[_ITraceObserver] = None, | |
| # deprecated: | |
| use_cuda: Optional[bool] = None, | |
| ): | |
| activities_set = set(activities) if activities else supported_activities() | |
| if use_cuda is not None: | |
| warn("use_cuda is deprecated, use activities argument instead") | |
| if use_cuda: | |
| activities_set.add(ProfilerActivity.CUDA) | |
| elif ProfilerActivity.CUDA in activities_set: | |
| activities_set.remove(ProfilerActivity.CUDA) | |
| assert len(activities_set) > 0, "No valid profiler activities found" | |
| super().__init__( | |
| activities=activities, | |
| record_shapes=record_shapes, | |
| profile_memory=profile_memory, | |
| with_stack=with_stack, | |
| with_flops=with_flops, | |
| with_modules=with_modules, | |
| experimental_config=experimental_config, | |
| execution_trace_observer=execution_trace_observer, | |
| ) | |
| if schedule: | |
| self.schedule = schedule | |
| # add step markers into the trace and table view | |
| self.record_steps = True | |
| else: | |
| self.schedule = _default_schedule_fn | |
| self.record_steps = False | |
| self.on_trace_ready = on_trace_ready | |
| self.step_num = 0 | |
| self.current_action = self.schedule(self.step_num) | |
| self.step_rec_fn: Optional[prof.record_function] = None | |
| self.action_map: Dict[ | |
| Tuple[ProfilerAction, Optional[ProfilerAction]], List[Any] | |
| ] = { | |
| # key is (prev_action, current_action), value is action list corresponding to the state pair. | |
| (ProfilerAction.NONE, ProfilerAction.NONE): [], | |
| (ProfilerAction.NONE, ProfilerAction.WARMUP): [self.prepare_trace], | |
| (ProfilerAction.NONE, ProfilerAction.RECORD): [ | |
| self.prepare_trace, | |
| self.start_trace, | |
| ], | |
| (ProfilerAction.NONE, ProfilerAction.RECORD_AND_SAVE): [ | |
| self.prepare_trace, | |
| self.start_trace, | |
| ], | |
| (ProfilerAction.WARMUP, ProfilerAction.NONE): [ | |
| partial(warn, "Incorrect schedule: WARMUP followed by NONE"), | |
| self.start_trace, | |
| self.stop_trace, | |
| ], | |
| (ProfilerAction.WARMUP, ProfilerAction.WARMUP): [], | |
| (ProfilerAction.WARMUP, ProfilerAction.RECORD): [self.start_trace], | |
| (ProfilerAction.WARMUP, ProfilerAction.RECORD_AND_SAVE): [self.start_trace], | |
| (ProfilerAction.RECORD, ProfilerAction.NONE): [ | |
| partial(warn, "Incorrect schedule: RECORD followed by NONE"), | |
| self.stop_trace, | |
| ], | |
| (ProfilerAction.RECORD, ProfilerAction.WARMUP): [ | |
| partial(warn, "Incorrect schedule: RECORD followed by WARMUP"), | |
| self.stop_trace, | |
| ], | |
| (ProfilerAction.RECORD, ProfilerAction.RECORD): [], | |
| (ProfilerAction.RECORD, ProfilerAction.RECORD_AND_SAVE): [], | |
| (ProfilerAction.RECORD_AND_SAVE, ProfilerAction.NONE): [ | |
| self.stop_trace, | |
| self._trace_ready, | |
| ], | |
| (ProfilerAction.RECORD_AND_SAVE, ProfilerAction.WARMUP): [ | |
| self.stop_trace, | |
| self._trace_ready, | |
| self.prepare_trace, | |
| ], | |
| (ProfilerAction.RECORD_AND_SAVE, ProfilerAction.RECORD): [ | |
| self.stop_trace, | |
| self._trace_ready, | |
| self.prepare_trace, | |
| self.start_trace, | |
| ], | |
| (ProfilerAction.RECORD_AND_SAVE, ProfilerAction.RECORD_AND_SAVE): [ | |
| self.stop_trace, | |
| self._trace_ready, | |
| self.prepare_trace, | |
| self.start_trace, | |
| ], | |
| # used for exit action | |
| (ProfilerAction.WARMUP, None): [self.start_trace, self.stop_trace], | |
| (ProfilerAction.RECORD, None): [self.stop_trace, self._trace_ready], | |
| (ProfilerAction.RECORD_AND_SAVE, None): [ | |
| self.stop_trace, | |
| self._trace_ready, | |
| ], | |
| } | |
| # Start tracking increments to profiler step, this will be used | |
| # by Kineto | |
| prof.KinetoStepTracker.init_step_count(PROFILER_STEP_NAME) | |
| def __enter__(self): | |
| self.start() | |
| return self | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| self.stop() | |
| prof.KinetoStepTracker.erase_step_count(PROFILER_STEP_NAME) | |
| if self.execution_trace_observer: | |
| self.execution_trace_observer.cleanup() | |
| def start(self): | |
| self._transit_action(ProfilerAction.NONE, self.current_action) | |
| if self.record_steps: | |
| self.step_rec_fn = prof.record_function( | |
| "ProfilerStep#" + str(self.step_num) | |
| ) | |
| self.step_rec_fn.__enter__() | |
| def stop(self): | |
| if self.record_steps and self.step_rec_fn: | |
| self.step_rec_fn.__exit__(None, None, None) | |
| self._transit_action(self.current_action, None) | |
| def step(self): | |
| """ | |
| Signals the profiler that the next profiling step has started. | |
| """ | |
| if self.record_steps and self.step_rec_fn: | |
| self.step_rec_fn.__exit__(None, None, None) | |
| prev_action = self.current_action | |
| self.step_num += 1 | |
| self.current_action = self.schedule(self.step_num) | |
| self._transit_action(prev_action, self.current_action) | |
| prof.KinetoStepTracker.increment_step(PROFILER_STEP_NAME) | |
| if self.record_steps: | |
| self.step_rec_fn = prof.record_function( | |
| "ProfilerStep#" + str(self.step_num) | |
| ) | |
| self.step_rec_fn.__enter__() | |
| def _trace_ready(self): | |
| if self.on_trace_ready: | |
| self.on_trace_ready(self) | |
| def _transit_action(self, prev_action, current_action): | |
| action_list = self.action_map.get((prev_action, current_action)) | |
| if action_list: | |
| for action in action_list: | |
| action() | |
| class ExecutionTraceObserver(_ITraceObserver): | |
| """Execution Trace Observer | |
| Each process can have a single ExecutionTraceObserver instance. The observer | |
| can be added to record function callbacks via calling register_callback() | |
| explicitly. Without calling unregister_callback(), repeated calls to | |
| register_callback() will not add additional observers to record function | |
| callbacks. Once an ExecutionTraceObserver is created, the start() and stop() | |
| methods control when the event data is recorded. | |
| Deleting or calling unregister_callback() will remove the observer from the | |
| record function callbacks, finalize the output file, and will stop | |
| incurring any overheads. | |
| """ | |
| def __init__(self): | |
| """ | |
| Initializes the default states. | |
| """ | |
| self._registered = False | |
| self._execution_trace_running = False | |
| def __del__(self): | |
| """ | |
| Calls unregister_callback() to make sure to finalize outputs. | |
| """ | |
| self.unregister_callback() | |
| def register_callback(self, output_file_path: str) -> Self: | |
| """ | |
| Adds ET observer to record function callbacks. The data will be | |
| written to output_file_path. | |
| """ | |
| if not self._registered: | |
| self._output_file_path = output_file_path | |
| self._registered = _add_execution_trace_observer(output_file_path) | |
| return self | |
| def unregister_callback(self): | |
| """ | |
| Removes ET observer from record function callbacks. | |
| """ | |
| if self._registered: | |
| self.stop() | |
| _remove_execution_trace_observer() | |
| self._registered = False | |
| def is_registered(self): | |
| """ | |
| Returns True if the execution trace observer is registered, otherwise False. | |
| """ | |
| return self._registered | |
| def is_running(self): | |
| """ | |
| Returns True if the observer is running, otherwise False. | |
| """ | |
| return self._execution_trace_running | |
| def start(self): | |
| """ | |
| Starts to capture. | |
| """ | |
| if self._registered and not self._execution_trace_running: | |
| _enable_execution_trace_observer() | |
| self._execution_trace_running = True | |
| def stop(self): | |
| """ | |
| Stops to capture. | |
| """ | |
| if self._execution_trace_running: | |
| _disable_execution_trace_observer() | |
| self._execution_trace_running = False | |
| def cleanup(self): | |
| """ | |
| Calls unregister_callback() to make sure to finalize outputs. | |
| """ | |
| self.unregister_callback() | |
| def get_output_file_path(self) -> str: | |
| """ | |
| Returns the output file name. | |
| """ | |
| if self.is_registered: | |
| return self._output_file_path | |
| else: | |
| raise RuntimeError( | |
| "A callback to the ET profiler needs to be registered " | |
| "first before getting the output file path" | |
| ) | |