Spaces:
Sleeping
Sleeping
| """Functions to export models into the ONNX IR format. | |
| These models can be loaded with the ONNX library and then | |
| converted to models which run on other deep learning frameworks. | |
| """ | |
| from __future__ import annotations | |
| import contextlib | |
| import copy | |
| import inspect | |
| import io | |
| import re | |
| import textwrap | |
| import typing | |
| import warnings | |
| from typing import ( | |
| Any, | |
| Callable, | |
| cast, | |
| Collection, | |
| Dict, | |
| List, | |
| Mapping, | |
| Optional, | |
| Sequence, | |
| Set, | |
| Tuple, | |
| Type, | |
| Union, | |
| ) | |
| import torch | |
| import torch._C._onnx as _C_onnx | |
| import torch.jit._trace | |
| import torch.serialization | |
| from torch import _C | |
| from torch.onnx import ( # noqa: F401 | |
| _constants, | |
| _exporter_states, | |
| errors, | |
| symbolic_caffe2, | |
| symbolic_helper, | |
| ) | |
| from torch.onnx._globals import GLOBALS | |
| from torch.onnx._internal import ( | |
| _beartype, | |
| diagnostics, | |
| jit_utils, | |
| onnx_proto_utils, | |
| registration, | |
| ) | |
| __all__ = [ | |
| "is_in_onnx_export", | |
| "select_model_mode_for_export", | |
| "disable_apex_o2_state_dict_hook", | |
| "setup_onnx_logging", | |
| "exporter_context", | |
| "export", | |
| "model_signature", | |
| "warn_on_static_input_change", | |
| "unpack_quantized_tensor", | |
| "export_to_pretty_string", | |
| "unconvertible_ops", | |
| "register_custom_op_symbolic", | |
| "unregister_custom_op_symbolic", | |
| ] | |
| def is_in_onnx_export() -> bool: | |
| """Returns whether it is in the middle of ONNX export.""" | |
| return GLOBALS.in_onnx_export | |
| # TODO(justinchuby): Remove dependency to this global variable from constant_fold.cpp | |
| # Skip check due to cannot import IValue from torch._C | |
| _params_dict = {} # type: ignore[var-annotated] | |
| def select_model_mode_for_export(model, mode: _C_onnx.TrainingMode): | |
| r"""A context manager to temporarily set the training mode of ``model`` | |
| to ``mode``, resetting it when we exit the with-block. | |
| Args: | |
| model: Same type and meaning as ``model`` arg to :func:`export`. | |
| mode: Same type and meaning as ``training`` arg to :func:`export`. | |
| """ | |
| if not isinstance(mode, _C_onnx.TrainingMode): | |
| raise TypeError( | |
| f"'mode' should be a torch.onnx.TrainingMode enum, but got '{type(mode)}'." | |
| ) | |
| originally_training: bool = False | |
| if hasattr(model, "training"): | |
| originally_training = model.training | |
| # ONNX opset 12 has better support for training amenable models, with updated | |
| # versions of the dropout and batch_norm operators | |
| if mode == _C_onnx.TrainingMode.TRAINING or ( | |
| mode == _C_onnx.TrainingMode.PRESERVE and originally_training | |
| ): | |
| GLOBALS.export_training = True | |
| if GLOBALS.export_onnx_opset_version < 12: | |
| warnings.warn( | |
| "You are exporting the model in training mode with onnx opset " | |
| f"version {GLOBALS.export_onnx_opset_version}. " | |
| "Opset versions lower than opset 12 will not be able to export " | |
| "nodes such as Dropout and BatchNorm correctly." | |
| ) | |
| else: | |
| GLOBALS.export_training = False | |
| GLOBALS.training_mode = mode | |
| if mode == _C_onnx.TrainingMode.TRAINING: | |
| model.train(True) | |
| elif mode == _C_onnx.TrainingMode.EVAL: | |
| model.train(False) | |
| # else mode == _C_onnx.TrainingMode.PRESERVE, do nothing | |
| try: | |
| yield | |
| finally: | |
| if hasattr(model, "training") and not mode == _C_onnx.TrainingMode.PRESERVE: | |
| model.train(originally_training) | |
| def disable_apex_o2_state_dict_hook( | |
| model: Union[torch.nn.Module, torch.jit.ScriptFunction] | |
| ): | |
| # Apex O2 hook state_dict to return fp16 weights as fp32. | |
| # Exporter cannot identify them as same tensors. | |
| # Since this hook is only used by optimizer, it is safe to | |
| # remove this hook while exporting. | |
| if not isinstance(model, torch.jit.ScriptFunction): | |
| model_hooks = {} # type: ignore[var-annotated] | |
| for module in model.modules(): | |
| for key, hook in module._state_dict_hooks.items(): | |
| if type(hook).__name__ == "O2StateDictHook": | |
| if module not in model_hooks: | |
| model_hooks[module] = {} | |
| model_hooks[module][key] = hook | |
| if module in model_hooks: | |
| for key in model_hooks[module]: | |
| module._state_dict_hooks.pop(key) | |
| try: | |
| yield | |
| finally: | |
| # Add the hooks back | |
| for module, m_map in model_hooks.items(): | |
| for key, hook in m_map.items(): | |
| module._state_dict_hooks[key] = hook | |
| else: | |
| try: | |
| yield | |
| finally: | |
| pass | |
| def setup_onnx_logging(verbose: bool): | |
| is_originally_enabled = torch.onnx.is_onnx_log_enabled() | |
| if is_originally_enabled or verbose: | |
| torch.onnx.enable_log() | |
| try: | |
| yield | |
| finally: | |
| if not is_originally_enabled: | |
| torch.onnx.disable_log() | |
| def exporter_context(model, mode: _C_onnx.TrainingMode, verbose: bool): | |
| with select_model_mode_for_export( | |
| model, mode | |
| ) as mode_ctx, disable_apex_o2_state_dict_hook( | |
| model | |
| ) as apex_ctx, setup_onnx_logging( | |
| verbose | |
| ) as log_ctx, diagnostics.create_export_diagnostic_context() as diagnostic_ctx: | |
| yield (mode_ctx, apex_ctx, log_ctx, diagnostic_ctx) | |
| def export( | |
| model: Union[torch.nn.Module, torch.jit.ScriptModule, torch.jit.ScriptFunction], | |
| args: Union[Tuple[Any, ...], torch.Tensor], | |
| f: Union[str, io.BytesIO], | |
| export_params: bool = True, | |
| verbose: bool = False, | |
| training: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL, | |
| input_names: Optional[Sequence[str]] = None, | |
| output_names: Optional[Sequence[str]] = None, | |
| operator_export_type: _C_onnx.OperatorExportTypes = _C_onnx.OperatorExportTypes.ONNX, | |
| opset_version: Optional[int] = None, | |
| do_constant_folding: bool = True, | |
| dynamic_axes: Optional[ | |
| Union[Mapping[str, Mapping[int, str]], Mapping[str, Sequence[int]]] | |
| ] = None, | |
| keep_initializers_as_inputs: Optional[bool] = None, | |
| custom_opsets: Optional[Mapping[str, int]] = None, | |
| export_modules_as_functions: Union[bool, Collection[Type[torch.nn.Module]]] = False, | |
| autograd_inlining: Optional[bool] = True, | |
| ) -> None: | |
| r"""Exports a model into ONNX format. | |
| If ``model`` is not a :class:`torch.jit.ScriptModule` nor a | |
| :class:`torch.jit.ScriptFunction`, this runs | |
| ``model`` once in order to convert it to a TorchScript graph to be exported | |
| (the equivalent of :func:`torch.jit.trace`). Thus this has the same limited support | |
| for dynamic control flow as :func:`torch.jit.trace`. | |
| Args: | |
| model (:class:`torch.nn.Module`, :class:`torch.jit.ScriptModule` or :class:`torch.jit.ScriptFunction`): | |
| the model to be exported. | |
| args (tuple or torch.Tensor): | |
| args can be structured either as: | |
| 1. ONLY A TUPLE OF ARGUMENTS:: | |
| args = (x, y, z) | |
| The tuple should contain model inputs such that ``model(*args)`` is a valid | |
| invocation of the model. Any non-Tensor arguments will be hard-coded into the | |
| exported model; any Tensor arguments will become inputs of the exported model, | |
| in the order they occur in the tuple. | |
| 2. A TENSOR:: | |
| args = torch.Tensor([1]) | |
| This is equivalent to a 1-ary tuple of that Tensor. | |
| 3. A TUPLE OF ARGUMENTS ENDING WITH A DICTIONARY OF NAMED ARGUMENTS:: | |
| args = ( | |
| x, | |
| { | |
| "y": input_y, | |
| "z": input_z | |
| } | |
| ) | |
| All but the last element of the tuple will be passed as non-keyword arguments, | |
| and named arguments will be set from the last element. If a named argument is | |
| not present in the dictionary, it is assigned the default value, or None if a | |
| default value is not provided. | |
| .. note:: | |
| If a dictionary is the last element of the args tuple, it will be | |
| interpreted as containing named arguments. In order to pass a dict as the | |
| last non-keyword arg, provide an empty dict as the last element of the args | |
| tuple. For example, instead of:: | |
| torch.onnx.export( | |
| model, | |
| ( | |
| x, | |
| # WRONG: will be interpreted as named arguments | |
| {y: z} | |
| ), | |
| "test.onnx.pb" | |
| ) | |
| Write:: | |
| torch.onnx.export( | |
| model, | |
| ( | |
| x, | |
| {y: z}, | |
| {} | |
| ), | |
| "test.onnx.pb" | |
| ) | |
| f: a file-like object (such that ``f.fileno()`` returns a file descriptor) | |
| or a string containing a file name. A binary protocol buffer will be written | |
| to this file. | |
| export_params (bool, default True): if True, all parameters will | |
| be exported. Set this to False if you want to export an untrained model. | |
| In this case, the exported model will first take all of its parameters | |
| as arguments, with the ordering as specified by ``model.state_dict().values()`` | |
| verbose (bool, default False): if True, prints a description of the | |
| model being exported to stdout. In addition, the final ONNX graph will include the | |
| field ``doc_string``` from the exported model which mentions the source code locations | |
| for ``model``. If True, ONNX exporter logging will be turned on. | |
| training (enum, default TrainingMode.EVAL): | |
| * ``TrainingMode.EVAL``: export the model in inference mode. | |
| * ``TrainingMode.PRESERVE``: export the model in inference mode if model.training is | |
| False and in training mode if model.training is True. | |
| * ``TrainingMode.TRAINING``: export the model in training mode. Disables optimizations | |
| which might interfere with training. | |
| input_names (list of str, default empty list): names to assign to the | |
| input nodes of the graph, in order. | |
| output_names (list of str, default empty list): names to assign to the | |
| output nodes of the graph, in order. | |
| operator_export_type (enum, default OperatorExportTypes.ONNX): | |
| * ``OperatorExportTypes.ONNX``: Export all ops as regular ONNX ops | |
| (in the default opset domain). | |
| * ``OperatorExportTypes.ONNX_FALLTHROUGH``: Try to convert all ops | |
| to standard ONNX ops in the default opset domain. If unable to do so | |
| (e.g. because support has not been added to convert a particular torch op to ONNX), | |
| fall back to exporting the op into a custom opset domain without conversion. Applies | |
| to `custom ops <https://pytorch.org/tutorials/advanced/torch_script_custom_ops.html>`_ | |
| as well as ATen ops. For the exported model to be usable, the runtime must support | |
| these non-standard ops. | |
| * ``OperatorExportTypes.ONNX_ATEN``: All ATen ops (in the TorchScript namespace "aten") | |
| are exported as ATen ops (in opset domain "org.pytorch.aten"). | |
| `ATen <https://pytorch.org/cppdocs/#aten>`_ is PyTorch's built-in tensor library, so | |
| this instructs the runtime to use PyTorch's implementation of these ops. | |
| .. warning:: | |
| Models exported this way are probably runnable only by Caffe2. | |
| This may be useful if the numeric differences in implementations of operators are | |
| causing large differences in behavior between PyTorch and Caffe2 (which is more | |
| common on untrained models). | |
| * ``OperatorExportTypes.ONNX_ATEN_FALLBACK``: Try to export each ATen op | |
| (in the TorchScript namespace "aten") as a regular ONNX op. If we are unable to do so | |
| (e.g. because support has not been added to convert a particular torch op to ONNX), | |
| fall back to exporting an ATen op. See documentation on OperatorExportTypes.ONNX_ATEN for | |
| context. | |
| For example:: | |
| graph(%0 : Float): | |
| %3 : int = prim::Constant[value=0]() | |
| # conversion unsupported | |
| %4 : Float = aten::triu(%0, %3) | |
| # conversion supported | |
| %5 : Float = aten::mul(%4, %0) | |
| return (%5) | |
| Assuming ``aten::triu`` is not supported in ONNX, this will be exported as:: | |
| graph(%0 : Float): | |
| %1 : Long() = onnx::Constant[value={0}]() | |
| # not converted | |
| %2 : Float = aten::ATen[operator="triu"](%0, %1) | |
| # converted | |
| %3 : Float = onnx::Mul(%2, %0) | |
| return (%3) | |
| If PyTorch was built with Caffe2 (i.e. with ``BUILD_CAFFE2=1``), then | |
| Caffe2-specific behavior will be enabled, including special support | |
| for ops are produced by the modules described in | |
| `Quantization <https://pytorch.org/docs/stable/quantization.html>`_. | |
| .. warning:: | |
| Models exported this way are probably runnable only by Caffe2. | |
| opset_version (int, default 17): The version of the | |
| `default (ai.onnx) opset <https://github.com/onnx/onnx/blob/master/docs/Operators.md>`_ | |
| to target. Must be >= 7 and <= 17. | |
| do_constant_folding (bool, default True): Apply the constant-folding optimization. | |
| Constant-folding will replace some of the ops that have all constant inputs | |
| with pre-computed constant nodes. | |
| dynamic_axes (dict[string, dict[int, string]] or dict[string, list(int)], default empty dict): | |
| By default the exported model will have the shapes of all input and output tensors | |
| set to exactly match those given in ``args``. To specify axes of tensors as | |
| dynamic (i.e. known only at run-time), set ``dynamic_axes`` to a dict with schema: | |
| * KEY (str): an input or output name. Each name must also be provided in ``input_names`` or | |
| ``output_names``. | |
| * VALUE (dict or list): If a dict, keys are axis indices and values are axis names. If a | |
| list, each element is an axis index. | |
| For example:: | |
| class SumModule(torch.nn.Module): | |
| def forward(self, x): | |
| return torch.sum(x, dim=1) | |
| torch.onnx.export( | |
| SumModule(), | |
| (torch.ones(2, 2),), | |
| "onnx.pb", | |
| input_names=["x"], | |
| output_names=["sum"] | |
| ) | |
| Produces:: | |
| input { | |
| name: "x" | |
| ... | |
| shape { | |
| dim { | |
| dim_value: 2 # axis 0 | |
| } | |
| dim { | |
| dim_value: 2 # axis 1 | |
| ... | |
| output { | |
| name: "sum" | |
| ... | |
| shape { | |
| dim { | |
| dim_value: 2 # axis 0 | |
| ... | |
| While:: | |
| torch.onnx.export( | |
| SumModule(), | |
| (torch.ones(2, 2),), | |
| "onnx.pb", | |
| input_names=["x"], | |
| output_names=["sum"], | |
| dynamic_axes={ | |
| # dict value: manually named axes | |
| "x": {0: "my_custom_axis_name"}, | |
| # list value: automatic names | |
| "sum": [0], | |
| } | |
| ) | |
| Produces:: | |
| input { | |
| name: "x" | |
| ... | |
| shape { | |
| dim { | |
| dim_param: "my_custom_axis_name" # axis 0 | |
| } | |
| dim { | |
| dim_value: 2 # axis 1 | |
| ... | |
| output { | |
| name: "sum" | |
| ... | |
| shape { | |
| dim { | |
| dim_param: "sum_dynamic_axes_1" # axis 0 | |
| ... | |
| keep_initializers_as_inputs (bool, default None): If True, all the | |
| initializers (typically corresponding to parameters) in the | |
| exported graph will also be added as inputs to the graph. If False, | |
| then initializers are not added as inputs to the graph, and only | |
| the non-parameter inputs are added as inputs. | |
| This may allow for better optimizations (e.g. constant folding) by | |
| backends/runtimes. | |
| If True, `deduplicate_initializers` pass will not be executed. This means | |
| initializers with duplicated values will not be deduplicated and | |
| will be treated as distinct inputs to the graph. This allows different | |
| input initializers to be supplied at the runtime following export. | |
| If ``opset_version < 9``, initializers MUST be part of graph | |
| inputs and this argument will be ignored and the behavior will be | |
| equivalent to setting this argument to True. | |
| If None, then the behavior is chosen automatically as follows: | |
| * If ``operator_export_type=OperatorExportTypes.ONNX``, the behavior is equivalent | |
| to setting this argument to False. | |
| * Else, the behavior is equivalent to setting this argument to True. | |
| custom_opsets (dict[str, int], default empty dict): A dict with schema: | |
| * KEY (str): opset domain name | |
| * VALUE (int): opset version | |
| If a custom opset is referenced by ``model`` but not mentioned in this dictionary, | |
| the opset version is set to 1. Only custom opset domain name and version should be | |
| indicated through this argument. | |
| export_modules_as_functions (bool or set of type of nn.Module, default False): Flag to enable | |
| exporting all ``nn.Module`` forward calls as local functions in ONNX. Or a set to indicate the | |
| particular types of modules to export as local functions in ONNX. | |
| This feature requires ``opset_version`` >= 15, otherwise the export will fail. This is because | |
| ``opset_version`` < 15 implies IR version < 8, which means no local function support. | |
| Module variables will be exported as function attributes. There are two categories of function | |
| attributes. | |
| 1. Annotated attributes: class variables that have type annotations via | |
| `PEP 526-style <https://www.python.org/dev/peps/pep-0526/#class-and-instance-variable-annotations>`_ | |
| will be exported as attributes. | |
| Annotated attributes are not used inside the subgraph of ONNX local function because | |
| they are not created by PyTorch JIT tracing, but they may be used by consumers | |
| to determine whether or not to replace the function with a particular fused kernel. | |
| 2. Inferred attributes: variables that are used by operators inside the module. Attribute names | |
| will have prefix "inferred::". This is to differentiate from predefined attributes retrieved from | |
| python module annotations. Inferred attributes are used inside the subgraph of ONNX local function. | |
| * ``False`` (default): export ``nn.Module`` forward calls as fine grained nodes. | |
| * ``True``: export all ``nn.Module`` forward calls as local function nodes. | |
| * Set of type of nn.Module: export ``nn.Module`` forward calls as local function nodes, | |
| only if the type of the ``nn.Module`` is found in the set. | |
| autograd_inlining (bool, default True): Flag used to control whether to inline autograd functions. | |
| Refer to https://github.com/pytorch/pytorch/pull/74765 for more details. | |
| Raises: | |
| :class:`torch.onnx.errors.CheckerError`: If the ONNX checker detects an invalid ONNX graph. | |
| :class:`torch.onnx.errors.UnsupportedOperatorError`: If the ONNX graph cannot be exported because it | |
| uses an operator that is not supported by the exporter. | |
| :class:`torch.onnx.errors.OnnxExporterError`: Other errors that can occur during export. | |
| All errors are subclasses of :class:`errors.OnnxExporterError`. | |
| """ | |
| _export( | |
| model, | |
| args, | |
| f, | |
| export_params, | |
| verbose, | |
| training, | |
| input_names, | |
| output_names, | |
| operator_export_type=operator_export_type, | |
| opset_version=opset_version, | |
| do_constant_folding=do_constant_folding, | |
| dynamic_axes=dynamic_axes, | |
| keep_initializers_as_inputs=keep_initializers_as_inputs, | |
| custom_opsets=custom_opsets, | |
| export_modules_as_functions=export_modules_as_functions, | |
| autograd_inlining=autograd_inlining, | |
| ) | |
| def _is_constant_tensor_list(node): | |
| if node.kind() != "prim::Constant": | |
| return False | |
| output_type = node.output().type() | |
| if output_type.isSubtypeOf(_C.ListType.ofTensors()): | |
| return True | |
| if output_type.isSubtypeOf(_C.ListType(_C.OptionalType.ofTensor())): | |
| return True | |
| # ONNX can't handle constants that are lists of tensors, which can | |
| # get generated in constant prop. So we split them back into prim::ListConstructs | |
| def _split_tensor_list_constants(g, block): | |
| for node in block.nodes(): | |
| for subblock in node.blocks(): | |
| _split_tensor_list_constants(g, subblock) | |
| if _is_constant_tensor_list(node): | |
| inputs = [] | |
| for val in node.output().toIValue(): | |
| input = g.insertConstant(val) | |
| input.node().moveBefore(node) | |
| input.node().copyMetadata(node) | |
| inputs.append(input) | |
| lc = ( | |
| g.create("prim::ListConstruct", inputs) | |
| .insertBefore(node) | |
| .output() | |
| .setType(_C.ListType.ofTensors()) | |
| ) | |
| lc.node().copyMetadata(node) | |
| node.output().replaceAllUsesWith(lc) | |
| def _optimize_graph( | |
| graph: _C.Graph, | |
| operator_export_type: _C_onnx.OperatorExportTypes, | |
| _disable_torch_constant_prop: bool = False, | |
| fixed_batch_size: bool = False, | |
| params_dict=None, | |
| dynamic_axes=None, | |
| input_names=None, | |
| module=None, | |
| ): | |
| if params_dict is None: | |
| params_dict = {} | |
| # Inline everything | |
| _C._jit_pass_inline(graph) | |
| # Remove fork/wait nodes | |
| _C._jit_pass_inline_fork_wait(graph) | |
| _C._jit_pass_lint(graph) | |
| if GLOBALS.autograd_inlining: | |
| _C._jit_pass_onnx_autograd_function_process(graph) | |
| _C._jit_pass_lower_all_tuples(graph) | |
| # we now record some ops like ones/zeros | |
| # into a trace where we previously recorded constants. | |
| # use constant prop to maintain our current level of onnx support | |
| # without implementing symbolics for all of them | |
| if _disable_torch_constant_prop is False: | |
| _C._jit_pass_constant_propagation(graph) | |
| _split_tensor_list_constants(graph, graph) | |
| # run dce to eliminate dead parts of the graph that might have been | |
| # left behind by things like symbolic_override | |
| _C._jit_pass_dce(graph) | |
| _C._jit_pass_lint(graph) | |
| # CSE should improve perf when Autocast is used with disabled cache | |
| # Autocast is disabled due to a limitation on tracer as described at https://github.com/pytorch/pytorch/issues/84092 | |
| # Must run before _C._jit_pass_erase_number_types to prevent type substitution | |
| if _C._jit_pass_cse(graph): | |
| _C._jit_pass_onnx_lint(graph) | |
| _C._jit_pass_canonicalize_graph_fuser_ops(graph) | |
| _C._jit_pass_lint(graph) | |
| _C._jit_pass_peephole(graph, True) | |
| _C._jit_pass_fuse_addmm(graph) | |
| _C._jit_pass_lint(graph) | |
| _C._jit_pass_peephole(graph, True) | |
| _C._jit_pass_lower_all_tuples(graph) | |
| # in _jit_pass_onnx, symbolic functions are called for each node for conversion. | |
| # However, there are nodes that cannot be converted without additional context. | |
| # For example, the number of outputs from split (and whether it is static or dynamic) is unknown | |
| # until the point where it is unpacked by listUnpack node. | |
| # This pass does a preprocess, and prepares the nodes such that enough context can be received | |
| # by the symbolic function. | |
| _C._jit_pass_onnx_remove_inplace_ops_for_onnx(graph, module) | |
| _C._jit_pass_onnx_preprocess(graph) | |
| # onnx does not support tuples, so try to remove them | |
| _C._jit_pass_lint(graph) | |
| # onnx only supports tensors, but 1 / 2 = 0.5 and tensor(1) / tensor(2) = 0 | |
| _C._jit_pass_prepare_division_for_onnx(graph) | |
| _C._jit_pass_onnx_remove_print(graph) | |
| _C._jit_pass_onnx_preprocess_caffe2(graph) | |
| symbolic_helper._quantized_ops.clear() | |
| # Unpack quantized weights for conv and linear ops and insert into graph. | |
| _C._jit_pass_onnx_unpack_quantized_weights( | |
| graph, params_dict, symbolic_helper.is_caffe2_aten_fallback() | |
| ) | |
| if symbolic_helper.is_caffe2_aten_fallback(): | |
| # Insert permutes before and after each conv op to ensure correct order. | |
| _C._jit_pass_onnx_quantization_insert_permutes(graph, params_dict) | |
| # Find consecutive permutes that are no-ops and remove them. | |
| _C._jit_pass_custom_pattern_based_rewrite_graph( | |
| textwrap.dedent( | |
| """\ | |
| graph(%Pi): | |
| %Pq = quantized::nhwc2nchw(%Pi) | |
| %Pr = quantized::nchw2nhwc(%Pq) | |
| return (%Pr)""" | |
| ), | |
| textwrap.dedent( | |
| """\ | |
| graph(%Ri): | |
| return (%Ri)""" | |
| ), | |
| graph, | |
| ) | |
| # onnx only supports tensors, so we turn all out number types into tensors | |
| _C._jit_pass_erase_number_types(graph) | |
| if GLOBALS.onnx_shape_inference: | |
| input_names = [] if input_names is None else input_names | |
| dynamic_axes = {} if dynamic_axes is None else dynamic_axes | |
| _C._jit_pass_onnx_set_dynamic_input_shape(graph, dynamic_axes, input_names) | |
| _C._jit_pass_onnx_lint(graph) | |
| graph = _C._jit_pass_onnx(graph, operator_export_type) | |
| _C._jit_pass_onnx_lint(graph) | |
| _C._jit_pass_lint(graph) | |
| _C._jit_pass_onnx_scalar_type_analysis( | |
| graph, True, GLOBALS.export_onnx_opset_version | |
| ) | |
| _C._jit_pass_lint(graph) | |
| _C._jit_pass_onnx_peephole( | |
| graph, GLOBALS.export_onnx_opset_version, fixed_batch_size | |
| ) | |
| _C._jit_pass_lint(graph) | |
| # graph is not a valid jit graph anymore because types have been replaced | |
| # (e.g. int with Tensor), so it now contains operators that don't actually | |
| # exist. We can't run normal dead code elimination because it'd fail trying | |
| # to look up if an operator has side effects, but we can run a dead code | |
| # elimination variant that doesn't need to look up if an op has side effects. | |
| _C._jit_pass_dce_allow_deleting_nodes_with_side_effects(graph) | |
| _C._jit_pass_lint(graph) | |
| graph = _C._jit_pass_canonicalize(graph) | |
| _C._jit_pass_lint(graph) | |
| if GLOBALS.onnx_shape_inference: | |
| try: | |
| _C._jit_pass_onnx_graph_shape_type_inference( | |
| graph, params_dict, GLOBALS.export_onnx_opset_version | |
| ) | |
| except RuntimeError as exc: | |
| if ( | |
| _C_onnx._CAFFE2_ATEN_FALLBACK | |
| and exc.args[0] | |
| == "ScalarType UNKNOWN_SCALAR is an unexpected tensor scalar type!" | |
| ): | |
| # Caffe2 builds can have UNKNOWN_SCALAR for some tensors | |
| pass | |
| return graph | |
| def warn_on_static_input_change(input_states): | |
| """Warns that changes to input dictionaries and strings won't take effect in the traced ONNX graph. | |
| We accept dictionaries and strings as ONNX inputs, but they should be only for | |
| configuration use. we detect here if these inputs are modified, and if so we warn | |
| the user that the changes won't take effect in the traced ONNX graph. | |
| """ | |
| for input, traced_input in zip(input_states[0], input_states[1]): | |
| if isinstance(input, dict): | |
| if list(input.keys()) != list(traced_input.keys()): | |
| warning = ( | |
| "We detected that you are modifying a dictionary that is an input to your " | |
| "model. " | |
| "Note that dictionaries are allowed as inputs in ONNX but they should be " | |
| "handled with care. " | |
| "Usages of dictionaries is not recommended, and should not be used except " | |
| "for configuration use. " | |
| "Also note that the order and values of the keys must remain the same. " | |
| ) | |
| warnings.warn(warning) | |
| elif isinstance(input, str): | |
| if input != traced_input: | |
| warning = ( | |
| "The model seems to have string inputs/outputs. " | |
| "Note that strings will not appear as inputs/outputs of the ONNX graph. " | |
| ) | |
| warnings.warn(warning) | |
| def _resolve_args_by_export_type(arg_name, arg_value, operator_export_type): | |
| """Resolves the arguments that are ignored when export_type != operator_export_type.ONNX.""" | |
| if ( | |
| operator_export_type is not operator_export_type.ONNX | |
| and _C_onnx._CAFFE2_ATEN_FALLBACK | |
| ): | |
| if arg_value is True: | |
| warnings.warn( | |
| f"'{arg_name}' can be set to True only when 'operator_export_type' is " | |
| "`ONNX`. Since 'operator_export_type' is not set to 'ONNX', " | |
| f"'{arg_name}' argument will be ignored." | |
| ) | |
| arg_value = False | |
| return arg_value | |
| def _decide_keep_init_as_input( | |
| keep_initializers_as_inputs: Optional[bool], | |
| operator_export_type: _C_onnx.OperatorExportTypes, | |
| opset_version: int, | |
| ): | |
| """Decides whether the initializers in the graph should be listed as ONNX graph inputs. | |
| This method encapsulates the logic to decide whether the initializers in the graph | |
| should be listed as ONNX graph inputs (i.e., whether to choose ONNX IR v3 or v4). | |
| If keep_initializers_as_inputs is not specified (None), then we decide whether to keep | |
| initializers as graph inputs (val_keep_init_as_ip) based on export type. If export type | |
| is ONNX, then do not keep initializers as input (val_keep_init_as_ip=False). For all other | |
| export types keep initializers as input (val_keep_init_as_ip=True). | |
| If keep_initializers_as_inputs is specified, then respect it. Unless opset version <= 8, | |
| in which case it must be ignored because for opset version <= 8, all initializers MUST be | |
| part of graph input (only ONNX IR v3 is allowed), i.e. val_keep_init_as_ip=True. | |
| Special handling is needed for opset version 8 or lower, because irrespective | |
| of user input for keep_initializers_as_inputs, the graph must follow ONNX IR v3 | |
| semantics, i.e. all initializers must be listed as ONNX graph input. | |
| """ | |
| if opset_version < 9: | |
| if keep_initializers_as_inputs is False: | |
| warnings.warn( | |
| "Setting 'keep_initializers_as_inputs=False' for opset version" | |
| "8 or lower would lead to an invalid ONNX graph. Therefore, " | |
| "'keep_initializers_as_inputs=False' is ignored during export." | |
| "Exported model will have initializers as graph inputs (compliant " | |
| " to ONNX IR v3)." | |
| ) | |
| return True # i.e. True == initializers are part of graph input (ONNX IR v3) | |
| val_keep_init_as_ip = ( | |
| True if keep_initializers_as_inputs is None else keep_initializers_as_inputs | |
| ) | |
| if ( | |
| keep_initializers_as_inputs is None | |
| and operator_export_type is _C_onnx.OperatorExportTypes.ONNX | |
| ): | |
| val_keep_init_as_ip = False | |
| return val_keep_init_as_ip | |
| def _decide_add_node_names(add_node_names, operator_export_type): | |
| return _resolve_args_by_export_type( | |
| "add_node_names", add_node_names, operator_export_type | |
| ) | |
| def _decide_constant_folding(do_constant_folding, operator_export_type, training): | |
| do_constant_folding = _resolve_args_by_export_type( | |
| "do_constant_folding", do_constant_folding, operator_export_type | |
| ) | |
| if do_constant_folding and ( | |
| training is not None and training is not _C_onnx.TrainingMode.EVAL | |
| ): | |
| warnings.warn( | |
| "It is recommended that constant folding be turned off ('do_constant_folding=False') " | |
| "when exporting the model in training-amenable mode, i.e. with 'training=TrainingMode.TRAIN' " | |
| "or 'training=TrainingMode.PRESERVE' (when model is in training mode). Otherwise, some " | |
| "learnable model parameters may not translate correctly in the exported ONNX model " | |
| "because constant folding mutates model parameters. Please consider " | |
| "turning off constant folding or setting the training=TrainingMode.EVAL." | |
| ) | |
| return do_constant_folding | |
| def _signature(model) -> inspect.Signature: | |
| should_be_callable = getattr(model, "forward", model) | |
| if callable(should_be_callable): | |
| return inspect.signature(should_be_callable) | |
| raise ValueError("model has no forward method and is not callable") | |
| def _decide_input_format(model, args): | |
| try: | |
| sig = _signature(model) | |
| except ValueError as e: | |
| warnings.warn(f"{e}, skipping _decide_input_format") | |
| return args | |
| try: | |
| ordered_list_keys = list(sig.parameters.keys()) | |
| if ordered_list_keys[0] == "self": | |
| ordered_list_keys = ordered_list_keys[1:] | |
| args_dict: Dict = {} | |
| if isinstance(args, list): | |
| args_list = args | |
| elif isinstance(args, tuple): | |
| args_list = list(args) | |
| else: | |
| args_list = [args] | |
| if isinstance(args_list[-1], dict): | |
| args_dict = args_list[-1] | |
| args_list = args_list[:-1] | |
| n_nonkeyword = len(args_list) | |
| for optional_arg in ordered_list_keys[n_nonkeyword:]: | |
| if optional_arg in args_dict: | |
| args_list.append(args_dict[optional_arg]) | |
| # Check if this arg has a default value | |
| else: | |
| param = sig.parameters[optional_arg] | |
| if param.default != param.empty: | |
| args_list.append(param.default) | |
| args = args_list if isinstance(args, list) else tuple(args_list) | |
| # Cases of models with no input args | |
| except IndexError: | |
| warnings.warn("No input args, skipping _decide_input_format") | |
| except Exception as e: | |
| warnings.warn(f"Skipping _decide_input_format\n {e.args[0]}") | |
| return args | |
| def _trace(func, args, operator_export_type, return_outs=False): | |
| # Special case for common case of passing a single Tensor | |
| if isinstance(args, torch.Tensor): | |
| args = (args,) | |
| trace_graph, torch_out, inputs_states = torch.jit._get_trace_graph( | |
| func, | |
| args, | |
| strict=False, | |
| _force_outplace=False, | |
| _return_inputs_states=True, | |
| ) | |
| warn_on_static_input_change(inputs_states) | |
| trace_graph = _optimize_graph(trace_graph, operator_export_type, params_dict={}) | |
| if return_outs: | |
| return trace_graph, torch_out | |
| return trace_graph | |
| def _trace_and_get_graph_from_model(model, args): | |
| # A basic sanity check: make sure the state_dict keys are the same | |
| # before and after running the model. Fail fast! | |
| orig_state_dict_keys = torch.jit._unique_state_dict(model).keys() | |
| # Disable Autocast cache because it replaces kernel's weight and bias | |
| # by (undesired) constants. | |
| # No perf impact for when there are reused weights since https://github.com/pytorch/pytorch/pull/85665 | |
| prev_autocast_cache_enabled = torch.is_autocast_cache_enabled() | |
| torch.set_autocast_cache_enabled(False) | |
| trace_graph, torch_out, inputs_states = torch.jit._get_trace_graph( | |
| model, | |
| args, | |
| strict=False, | |
| _force_outplace=False, | |
| _return_inputs_states=True, | |
| ) | |
| torch.set_autocast_cache_enabled(prev_autocast_cache_enabled) | |
| warn_on_static_input_change(inputs_states) | |
| if orig_state_dict_keys != torch.jit._unique_state_dict(model).keys(): | |
| raise RuntimeError( | |
| "state_dict changed after running the tracer; " | |
| "something weird is happening in your model!" | |
| ) | |
| return trace_graph, torch_out | |
| def _get_param_count_list(method_graph, args_params): | |
| param_count_list = [] | |
| for input_, arg_params_ in zip(method_graph.inputs(), args_params): | |
| if "PackedParams" in str(input_.type()): | |
| in_vars, _ = torch.jit._flatten(arg_params_) | |
| param_count_list.append(len(in_vars)) | |
| else: | |
| param_count_list.append(arg_params_ is not None) | |
| return param_count_list | |
| def _check_flatten_did_not_remove(original, jit_flattened): | |
| """torch.jit._flatten removes None. Check if it did so in this case.""" | |
| def flatten(x): | |
| if isinstance(x, (list, tuple)): | |
| for inner in x: | |
| yield from flatten(inner) | |
| elif isinstance(x, dict): | |
| for inner in x.values(): | |
| yield from flatten(inner) | |
| else: | |
| yield x | |
| flattened_with_none = list(flatten(original)) | |
| num_none = len(flattened_with_none) - len(jit_flattened) | |
| assert num_none >= 0 | |
| if num_none: | |
| raise ValueError( | |
| f"args contained {num_none} None's after flattening. " | |
| "When exporting a ScriptModule or ScriptFunction, no args may " | |
| "be None because that breaks type propagation." | |
| ) | |
| def _create_jit_graph( | |
| model: Union[torch.nn.Module, torch.jit.ScriptFunction], args: Sequence[Any] | |
| ) -> Tuple[_C.Graph, List[_C.IValue], Optional[Any], Optional[_C.ScriptModule]]: | |
| if isinstance(model, (torch.jit.ScriptFunction, torch.jit.ScriptModule)): | |
| flattened_args = tuple(torch.jit._flatten(tuple(args))[0]) | |
| _check_flatten_did_not_remove(args, flattened_args) | |
| torch_out = None | |
| if isinstance(model, torch.jit.ScriptModule): | |
| try: | |
| graph = model.forward.graph # type: ignore[attr-defined] | |
| except AttributeError as e: | |
| raise RuntimeError("'forward' method must be a script method") from e | |
| _C._jit_pass_onnx_function_substitution(graph) | |
| freezed_module = _C._freeze_module( | |
| cast(_C.ScriptModule, model._c), preserveParameters=True | |
| ) | |
| module, params = _C._jit_onnx_list_model_parameters(freezed_module) | |
| method_graph = module._get_method("forward").graph | |
| args_params = tuple(args) + tuple(params) | |
| param_count_list = _get_param_count_list(method_graph, args_params) | |
| in_vars, _ = torch.jit._flatten(args_params) | |
| graph = _C._propagate_and_assign_input_shapes( | |
| method_graph, tuple(in_vars), param_count_list, False, False | |
| ) | |
| return graph, params, torch_out, module | |
| # torch.jit.ScriptFunction | |
| params = [] | |
| graph = model.graph | |
| _C._jit_pass_onnx_function_substitution(graph) | |
| param_count_list = _get_param_count_list(graph, args) | |
| graph = _C._propagate_and_assign_input_shapes( | |
| graph, flattened_args, param_count_list, False, False | |
| ) | |
| return graph, params, torch_out, None | |
| graph, torch_out = _trace_and_get_graph_from_model(model, args) | |
| _C._jit_pass_onnx_lint(graph) | |
| state_dict = torch.jit._unique_state_dict(model) | |
| params = list(state_dict.values()) | |
| graph_inputs = list(graph.inputs()) | |
| user_input_num = len(graph_inputs) - len(state_dict) | |
| param_names = list(state_dict.keys()) | |
| for i, inp in enumerate(graph_inputs): | |
| if i >= user_input_num: | |
| inp.setDebugName(param_names[i - user_input_num]) | |
| _C._jit_pass_onnx_function_substitution(graph) | |
| return graph, params, torch_out, None | |
| def _get_named_param_dict(graph, params): | |
| input_and_param_names = [val.debugName() for val in graph.inputs()] | |
| param_names = input_and_param_names[len(input_and_param_names) - len(params) :] | |
| _params_dict = dict(zip(param_names, params)) | |
| return _params_dict | |
| def _get_example_outputs(model, args): | |
| input_args = copy.deepcopy(args) | |
| input_kwargs = {} | |
| if input_args and isinstance(input_args[-1], dict): | |
| input_kwargs = input_args[-1] | |
| input_args = input_args[:-1] | |
| example_outputs = model(*input_args, **input_kwargs) | |
| if isinstance(example_outputs, list): | |
| example_outputs = [example_outputs] | |
| elif not isinstance(example_outputs, tuple): | |
| example_outputs = (example_outputs,) | |
| return example_outputs | |
| _qtype_vtype_map = { | |
| torch.quint8: torch.uint8, | |
| torch.qint8: torch.int8, | |
| torch.qint32: torch.int32, | |
| torch.quint4x2: torch.int8, | |
| } | |
| def unpack_quantized_tensor(value, cast_onnx_accepted=True): | |
| if isinstance(value, torch.Tensor) and value.dtype in _qtype_vtype_map: | |
| q_value_dequantize = value.dequantize() | |
| q_scale = ( | |
| torch.tensor(value.q_scale(), dtype=torch.double) | |
| if cast_onnx_accepted | |
| else torch.tensor(value.q_scale(), dtype=torch.float32) | |
| ) | |
| q_zero_point = ( | |
| torch.tensor(value.q_zero_point(), dtype=torch.int64) | |
| if cast_onnx_accepted | |
| else torch.tensor(value.q_zero_point(), dtype=_qtype_vtype_map[value.dtype]) | |
| ) | |
| q_value = q_value_dequantize / q_scale + q_zero_point | |
| q_value = q_value.to(dtype=_qtype_vtype_map[value.dtype]) | |
| return q_value, q_scale, q_zero_point | |
| else: | |
| return (value,) | |
| def _pre_trace_quant_model(model, args): | |
| r"""Returns `torch.jit.trace(model, args)` if model is quantized. Otherwise do nothing and return | |
| original model. | |
| This is due to https://github.com/pytorch/pytorch/issues/75761. | |
| """ | |
| if any( | |
| hasattr(m, "_packed_params") for m in getattr(model, "modules", list)() | |
| ) or any(getattr(arg, "is_quantized", False) for arg in args): | |
| return torch.jit.trace(model, args) | |
| return model | |
| def _model_to_graph( | |
| model, | |
| args, | |
| verbose=False, | |
| input_names=None, | |
| output_names=None, | |
| operator_export_type=_C_onnx.OperatorExportTypes.ONNX, | |
| do_constant_folding=True, | |
| _disable_torch_constant_prop=False, | |
| fixed_batch_size=False, | |
| training=_C_onnx.TrainingMode.EVAL, | |
| dynamic_axes=None, | |
| ) -> Tuple[ | |
| _C.Graph, | |
| Dict[str, torch.Tensor], | |
| Optional[ | |
| Union[ | |
| torch.Tensor, | |
| Tuple[torch.Tensor, ...], | |
| List[torch.Tensor], | |
| Dict[str, torch.Tensor], | |
| Any, # Can be nested tuples etc. | |
| ] | |
| ], | |
| ]: | |
| """Converts model into an ONNX graph. | |
| Returns: | |
| graph: A TorchScript IR Graph with ONNX nodes. | |
| params_dict: Dict from input param name to param value. | |
| torch_out: The output tensors resulting from the trace of ``model``. | |
| If ``model`` is a :class:`torch.jit.ScriptModule` or :class:`torch.jit.ScriptFunction`, | |
| this will be None, since we are not doing any tracing. | |
| """ | |
| # TODO: can we simplify this to always return a tuple of Tensor or None? | |
| # Special case for common case of passing a single Tensor | |
| if isinstance(args, (torch.Tensor, int, float, bool)): | |
| args = (args,) | |
| model = _pre_trace_quant_model(model, args) | |
| graph, params, torch_out, module = _create_jit_graph(model, args) | |
| params_dict = _get_named_param_dict(graph, params) | |
| try: | |
| graph = _optimize_graph( | |
| graph, | |
| operator_export_type, | |
| _disable_torch_constant_prop=_disable_torch_constant_prop, | |
| fixed_batch_size=fixed_batch_size, | |
| params_dict=params_dict, | |
| dynamic_axes=dynamic_axes, | |
| input_names=input_names, | |
| module=module, | |
| ) | |
| except Exception as e: | |
| torch.onnx.log("Torch IR graph at exception: ", graph) | |
| raise | |
| is_script = isinstance(model, (torch.jit.ScriptFunction, torch.jit.ScriptModule)) | |
| if is_script: | |
| example_outputs = _get_example_outputs(model, args) | |
| example_outputs_final = () | |
| for example_output in example_outputs: | |
| example_outputs_final += unpack_quantized_tensor(example_output) | |
| out_vars, desc = torch.jit._flatten(example_outputs_final) | |
| _C._jit_pass_onnx_assign_output_shape( | |
| graph, | |
| out_vars, | |
| desc, | |
| GLOBALS.onnx_shape_inference, | |
| is_script, | |
| GLOBALS.export_onnx_opset_version, | |
| ) | |
| # NB: ONNX requires complete information about output types, which might be | |
| # erased by some optimizations, so we need to set it explicitly again. | |
| else: | |
| if not isinstance(torch_out, (list, tuple)): | |
| output_wrapped = [torch_out] | |
| else: | |
| output_wrapped = torch_out # type: ignore[assignment] | |
| output_tensors, out_desc = torch.jit._flatten(tuple(output_wrapped)) | |
| # assign_output_shape pass is not compatible with quantized outputs. | |
| # Quantized outputs are flattened to 3 values in ONNX, while packed as | |
| # single value in PyTorch. | |
| if not any(getattr(out, "is_quantized", False) for out in output_tensors): | |
| _C._jit_pass_onnx_assign_output_shape( | |
| graph, | |
| output_tensors, | |
| out_desc, | |
| GLOBALS.onnx_shape_inference, | |
| is_script, | |
| GLOBALS.export_onnx_opset_version, | |
| ) | |
| _set_input_and_output_names(graph, input_names, output_names) | |
| params_dict = _get_named_param_dict(graph, params) | |
| if ( | |
| do_constant_folding | |
| and GLOBALS.export_onnx_opset_version | |
| >= _constants.ONNX_CONSTANT_FOLDING_MIN_OPSET | |
| ): | |
| if training is None or training == _C_onnx.TrainingMode.EVAL: | |
| params_dict = _C._jit_pass_onnx_eval_peephole(graph, params_dict) | |
| params_dict = _C._jit_pass_onnx_constant_fold( | |
| graph, params_dict, GLOBALS.export_onnx_opset_version | |
| ) | |
| _C._jit_pass_dce_allow_deleting_nodes_with_side_effects(graph) | |
| if GLOBALS.onnx_shape_inference: | |
| try: | |
| _C._jit_pass_onnx_graph_shape_type_inference( | |
| graph, params_dict, GLOBALS.export_onnx_opset_version | |
| ) | |
| except RuntimeError as exc: | |
| if ( | |
| _C_onnx._CAFFE2_ATEN_FALLBACK | |
| and exc.args[0] | |
| == "ScalarType UNKNOWN_SCALAR is an unexpected tensor scalar type!" | |
| ): | |
| # Caffe2 builds can have UNKNOWN_SCALAR for some tensors | |
| pass | |
| params_dict = _C._jit_pass_onnx_eliminate_unused_items(graph, params_dict) | |
| # For ONNX opset < 9, constants only have three data types: float16, float, double. | |
| # In this pass transform constants of other data types to float/double + cast operator. | |
| if GLOBALS.export_onnx_opset_version < 9: | |
| _C._jit_pass_onnx_cast_all_constant_to_floating(graph) | |
| params_dict = _C._jit_pass_filter_non_tensor_arguments(params_dict) | |
| _C._jit_decay_packed_param_input_types(graph) | |
| # If output names lack a proper name and are identified only by their unique | |
| # give them a legible name for debugging purposes | |
| _apply_friendly_debug_names(graph, params_dict) | |
| return graph, params_dict, torch_out | |
| def export_to_pretty_string( | |
| model, | |
| args, | |
| export_params=True, | |
| verbose=False, | |
| training=_C_onnx.TrainingMode.EVAL, | |
| input_names=None, | |
| output_names=None, | |
| operator_export_type=_C_onnx.OperatorExportTypes.ONNX, | |
| export_type=None, | |
| google_printer=False, | |
| opset_version=None, | |
| keep_initializers_as_inputs=None, | |
| custom_opsets=None, | |
| add_node_names=True, | |
| do_constant_folding=True, | |
| dynamic_axes=None, | |
| ): | |
| r""" | |
| Similar to :func:`export`, but returns a text representation of the ONNX | |
| model. Only differences in args listed below. All other args are the same | |
| as :func:`export`. | |
| Args: | |
| add_node_names (bool, default True): Whether or not to set | |
| NodeProto.name. This makes no difference unless | |
| ``google_printer=True``. | |
| google_printer (bool, default False): If False, will return a custom, | |
| compact representation of the model. If True will return the | |
| protobuf's `Message::DebugString()`, which is more verbose. | |
| Returns: | |
| A UTF-8 str containing a human-readable representation of the ONNX model. | |
| """ | |
| if opset_version is None: | |
| opset_version = _constants.ONNX_DEFAULT_OPSET | |
| if custom_opsets is None: | |
| custom_opsets = {} | |
| GLOBALS.export_onnx_opset_version = opset_version | |
| GLOBALS.operator_export_type = operator_export_type | |
| with exporter_context(model, training, verbose): | |
| val_keep_init_as_ip = _decide_keep_init_as_input( | |
| keep_initializers_as_inputs, operator_export_type, opset_version | |
| ) | |
| val_add_node_names = _decide_add_node_names( | |
| add_node_names, operator_export_type | |
| ) | |
| val_do_constant_folding = _decide_constant_folding( | |
| do_constant_folding, operator_export_type, training | |
| ) | |
| args = _decide_input_format(model, args) | |
| graph, params_dict, torch_out = _model_to_graph( | |
| model, | |
| args, | |
| verbose, | |
| input_names, | |
| output_names, | |
| operator_export_type, | |
| val_do_constant_folding, | |
| training=training, | |
| dynamic_axes=dynamic_axes, | |
| ) | |
| return graph._pretty_print_onnx( # type: ignore[attr-defined] | |
| params_dict, | |
| opset_version, | |
| False, | |
| operator_export_type, | |
| google_printer, | |
| val_keep_init_as_ip, | |
| custom_opsets, | |
| val_add_node_names, | |
| ) | |
| def unconvertible_ops( | |
| model, | |
| args, | |
| training: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL, | |
| opset_version: Optional[int] = None, | |
| ) -> Tuple[_C.Graph, List[str]]: | |
| """Returns an approximated list of all ops that are yet supported by :mod:`torch.onnx`. | |
| The list is approximated because some ops may be removed during the conversion | |
| process and don't need to be converted. Some other ops may have partial support | |
| that will fail conversion with particular inputs. Please open a Github Issue | |
| for op support requests. | |
| Args: | |
| model: Same as the `model` parameter in :func:`torch.onnx.export`. | |
| args: Same as the `args` parameter in :func:`torch.onnx.export`. | |
| training: Same as the `training` parameter in :func:`torch.onnx.export`. | |
| opset_version: Same as the `opset_version` parameter in :func:`torch.onnx.export`. | |
| Returns: | |
| The JIT graph and a list of unconvertible ops in the format of "domain::op". | |
| """ | |
| opset_version = opset_version or _constants.ONNX_DEFAULT_OPSET | |
| GLOBALS.export_onnx_opset_version = opset_version | |
| try: | |
| with exporter_context(model, training, verbose=False): | |
| # Create a mostly clean JIT graph that contains the plain aten and | |
| # other ops we can check with the symbolic registry. | |
| # NOTE: We don't want to actually convert any ops to ONNX or run any | |
| # symbolic functions because there is a higher chance that a pass | |
| # fails or an unconvertible op messes up the graph during ONNX conversion. | |
| # This way we can always generate a list just by looking at the names | |
| # of the ops in the graph. | |
| args = _decide_input_format(model, args) | |
| model = _pre_trace_quant_model(model, args) | |
| graph, _, _, module = _create_jit_graph(model, args) | |
| _C._jit_pass_inline(graph) | |
| _C._jit_pass_onnx_remove_inplace_ops_for_onnx(graph, module) | |
| _C._jit_pass_erase_number_types(graph) | |
| _C._jit_pass_dce_allow_deleting_nodes_with_side_effects(graph) | |
| except Exception as e: | |
| raise errors.OnnxExporterError( | |
| "Failed to discover unconvertible ops because of errors during the JIT graph " | |
| "generation process." | |
| ) from e | |
| unsupported_ops = [] | |
| for node in graph.nodes(): | |
| domain_op = node.kind() | |
| if domain_op.startswith(("onnx::", "prim::")): | |
| # We consider onnx and prim ops as supported ops, even though some "prim" | |
| # ops are not implemented as symbolic functions, because they may be | |
| # eliminated in the conversion passes. Users may still see errors caused | |
| # by prim ops even though they don't show up in the list. | |
| continue | |
| if not registration.registry.is_registered_op( | |
| domain_op.rstrip("_"), opset_version | |
| ): | |
| # We consider all registered ops supported, even though some of them are | |
| # only partially supported, because there is not yet a good way to check | |
| # if an op is fully supported. | |
| # TODO(justinchuby): Create a way to check if an op is fully supported. | |
| unsupported_ops.append(domain_op) | |
| return graph, unsupported_ops | |
| def _setup_trace_module_map( | |
| model: Union[torch.nn.Module, torch.jit.ScriptModule], | |
| export_modules_as_functions: Union[bool, Collection[Type[torch.nn.Module]]], | |
| ) -> Set[str]: | |
| def __register_attribute_hook(): | |
| attr_name = "_onnx_attrs" | |
| def _track_module_attributes_forward_pre_hook(module, input): | |
| setattr(module, attr_name, _get_module_attributes(module)) | |
| def _track_module_attributes_forward_hook(module, input, output): | |
| tracing_state = _C._get_tracing_state() | |
| if not tracing_state: | |
| return | |
| graph = tracing_state.graph() | |
| onnx_attrs = {} | |
| if hasattr(module, attr_name): | |
| onnx_attrs = getattr(module, attr_name) | |
| delattr(module, attr_name) | |
| _C._jit_pass_onnx_track_scope_attributes(graph, onnx_attrs) | |
| for m in model.modules(): | |
| m.register_forward_hook(_track_module_attributes_forward_hook) | |
| m.register_forward_pre_hook(_track_module_attributes_forward_pre_hook) | |
| def _unqualified_variable_name(qualified_name: str) -> str: | |
| """ | |
| Parse qualified variable name and return the unqualified version. | |
| Pure numeric atoms are considered inadequate, so this function will look past them, | |
| and start from the first non-numeric atom. | |
| Example: | |
| >>> _unqualified_variable_name('__main__.Foo.bar') | |
| 'bar' | |
| >>> _unqualified_variable_name('__main__.Foo.bar.0') | |
| 'bar.0' | |
| """ | |
| name_atoms = qualified_name.split(".") | |
| for i, atom in reversed(list(enumerate(name_atoms))): | |
| if not atom.isnumeric(): | |
| return ".".join(name_atoms[i:]) | |
| return qualified_name | |
| trace_module_map = { | |
| _m: torch._C._jit_onnx_create_full_scope_name( | |
| torch.typename(type(_m)), _unqualified_variable_name(_n) | |
| ) | |
| for _n, _m in model.named_modules() | |
| } | |
| torch.jit._trace._trace_module_map = trace_module_map | |
| if isinstance(export_modules_as_functions, bool) and export_modules_as_functions: | |
| module_typenames = {torch.typename(type(module)) for module in trace_module_map} | |
| elif isinstance(export_modules_as_functions, set) and export_modules_as_functions: | |
| def _find_typename(v): | |
| if isinstance(v, type): | |
| return torch.typename(v) | |
| else: | |
| raise RuntimeError( | |
| "Only type of the `nn.Module` should be " | |
| "passed in the set for argument `export_modules_as_functions`. " | |
| "Got `%s`." % (type(v).__name__) | |
| ) | |
| module_typenames = {_find_typename(v) for v in export_modules_as_functions} | |
| else: | |
| module_typenames = set() | |
| if module_typenames: | |
| __register_attribute_hook() | |
| return module_typenames | |
| def _reset_trace_module_map(): | |
| torch.jit._trace._trace_module_map = None | |
| _C._jit_pass_onnx_clear_scope_records() | |
| def _get_module_attributes(module): | |
| annotations = typing.get_type_hints(type(module)) | |
| base_m_annotations = typing.get_type_hints(torch.nn.Module) | |
| [annotations.pop(k, None) for k in base_m_annotations] | |
| # Check whether module attributes can be accessed. Some classes | |
| # define attributes but don't provide access to them in their | |
| # constructor. | |
| # | |
| # For example, torch.nn.Embedding has the `freeze` variable and its | |
| # type specified in the class but the attribute is not created in the | |
| # constructor. In other words, there is no `self.freeze = <True | False>` | |
| # in the constructor. | |
| # | |
| # Reference: https://github.com/pytorch/pytorch/blob/92de1d322223fb5584e384971b32c46b93bc2f4b/torch/nn/modules/sparse.py#L120 | |
| attrs = {} | |
| for k in annotations: | |
| try: | |
| attrs[k] = getattr(module, k) | |
| except AttributeError: | |
| torch.onnx.log(f"Skipping module attribute '{k}'") | |
| continue | |
| return attrs | |
| def _export( | |
| model, | |
| args, | |
| f, | |
| export_params=True, | |
| verbose=False, | |
| training=_C_onnx.TrainingMode.EVAL, | |
| input_names=None, | |
| output_names=None, | |
| operator_export_type=_C_onnx.OperatorExportTypes.ONNX, | |
| export_type=None, | |
| opset_version=None, | |
| do_constant_folding=True, | |
| dynamic_axes=None, | |
| keep_initializers_as_inputs=None, | |
| fixed_batch_size=False, | |
| custom_opsets=None, | |
| add_node_names=True, | |
| onnx_shape_inference=True, | |
| export_modules_as_functions=False, | |
| autograd_inlining=True, | |
| ): | |
| assert GLOBALS.in_onnx_export is False | |
| if export_type is None: | |
| export_type = _exporter_states.ExportTypes.PROTOBUF_FILE | |
| # Discussed deprecation with Nikita Shulga and Sergii Dymchenko from Meta | |
| if _C_onnx._CAFFE2_ATEN_FALLBACK: | |
| warnings.warn( | |
| "Caffe2 ONNX exporter is deprecated in version 2.0 and will be " | |
| "removed in 2.2. Please use PyTorch 2.1 or older for this capability.", | |
| category=FutureWarning, | |
| stacklevel=2, | |
| ) | |
| if isinstance(model, torch.nn.DataParallel): | |
| raise ValueError( | |
| "torch.nn.DataParallel is not supported by ONNX " | |
| "exporter, please use 'attribute' module to " | |
| "unwrap model from torch.nn.DataParallel. Try " | |
| "torch.onnx.export(model.module, ...)" | |
| ) | |
| GLOBALS.onnx_shape_inference = onnx_shape_inference | |
| if opset_version is None: | |
| opset_version = _constants.ONNX_DEFAULT_OPSET | |
| # torch.onnx.export does not support opset versions >=18 | |
| if opset_version > _constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET: | |
| # We do not want to fail because we should still allow users to create | |
| # custom symbolic functions for opset>17 | |
| warnings.warn( | |
| f"Exporting to ONNX opset version {opset_version} is not supported. " | |
| f"by 'torch.onnx.export()'. " | |
| f"The highest opset version supported is {_constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET}. " | |
| f"To use a newer opset version, consider 'torch.onnx.dynamo_export()'. " | |
| f"Note that dynamo_export() is in preview. Please report errors with " | |
| f"dynamo_export() as Github issues to https://github.com/pytorch/pytorch/issues.", | |
| category=errors.OnnxExporterWarning, | |
| ) | |
| if export_modules_as_functions and opset_version < 15: | |
| raise ValueError( | |
| "`export_modules_as_functions` is not supported for `opset_version` < 15." | |
| "This is because `opset_version` < 15 implies IR version < 8, which means " | |
| "no local function support. " | |
| ) | |
| if not operator_export_type: | |
| if _C_onnx._CAFFE2_ATEN_FALLBACK: | |
| operator_export_type = _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK | |
| else: | |
| operator_export_type = _C_onnx.OperatorExportTypes.ONNX | |
| # By default, training=TrainingMode.EVAL, | |
| # which is good because running a model in training mode could result in | |
| # internal buffers getting updated, dropout getting applied, etc. | |
| # If you really know what you're doing, you can turn | |
| # training=TrainingMode.TRAINING or training=TrainingMode.PRESERVE, | |
| # (to preserve whatever the original training mode was.) | |
| GLOBALS.export_onnx_opset_version = opset_version | |
| GLOBALS.operator_export_type = operator_export_type | |
| try: | |
| GLOBALS.in_onnx_export = True | |
| _autograd_inlining_previous = GLOBALS.autograd_inlining | |
| GLOBALS.autograd_inlining = autograd_inlining | |
| module_typenames_to_export_as_functions: Set[str] = set() | |
| if isinstance(model, (torch.nn.Module, torch.jit.ScriptModule)): | |
| module_typenames_to_export_as_functions = _setup_trace_module_map( | |
| model, export_modules_as_functions | |
| ) | |
| with exporter_context(model, training, verbose): | |
| val_keep_init_as_ip = _decide_keep_init_as_input( | |
| keep_initializers_as_inputs, | |
| operator_export_type, | |
| opset_version, | |
| ) | |
| val_add_node_names = _decide_add_node_names( | |
| add_node_names, operator_export_type | |
| ) | |
| val_do_constant_folding = _decide_constant_folding( | |
| do_constant_folding, operator_export_type, training | |
| ) | |
| # Normally f can be a file-like object, but for large models, the external data format requires a | |
| # valid `model_file_location`. Code in export.cpp will enforce this. | |
| if isinstance(f, str): | |
| model_file_location = f | |
| else: | |
| model_file_location = "" | |
| args = _decide_input_format(model, args) | |
| if dynamic_axes is None: | |
| dynamic_axes = {} | |
| _validate_dynamic_axes(dynamic_axes, model, input_names, output_names) | |
| graph, params_dict, torch_out = _model_to_graph( | |
| model, | |
| args, | |
| verbose, | |
| input_names, | |
| output_names, | |
| operator_export_type, | |
| val_do_constant_folding, | |
| fixed_batch_size=fixed_batch_size, | |
| training=training, | |
| dynamic_axes=dynamic_axes, | |
| ) | |
| # TODO: Don't allocate a in-memory string for the protobuf | |
| defer_weight_export = ( | |
| export_type is not _exporter_states.ExportTypes.PROTOBUF_FILE | |
| ) | |
| if custom_opsets is None: | |
| custom_opsets = {} | |
| _C._jit_pass_dce_allow_deleting_nodes_with_side_effects(graph) | |
| node_attr_to_name = {} # type: ignore[var-annotated] | |
| if module_typenames_to_export_as_functions: | |
| # NOTE: cannot call DCE after this pass. DCE will remove function definition nodes. | |
| node_attr_to_name = _C._jit_pass_onnx_function_extraction( | |
| graph, | |
| module_typenames_to_export_as_functions, | |
| list(params_dict.keys()), | |
| ) | |
| if keep_initializers_as_inputs is not True: | |
| params_dict = _C._jit_pass_onnx_deduplicate_initializers( # type: ignore[assignment] | |
| graph, params_dict, getattr(model, "training", False) # type: ignore[arg-type] | |
| ) | |
| _C._jit_pass_onnx_assign_scoped_names_for_node_and_value(graph) | |
| if export_params: | |
| ( | |
| proto, | |
| export_map, | |
| val_use_external_data_format, | |
| node_names, | |
| ) = graph._export_onnx( # type: ignore[attr-defined] | |
| params_dict, | |
| opset_version, | |
| dynamic_axes, | |
| defer_weight_export, | |
| operator_export_type, | |
| not verbose, | |
| val_keep_init_as_ip, | |
| custom_opsets, | |
| val_add_node_names, | |
| model_file_location, | |
| node_attr_to_name, | |
| ) | |
| else: | |
| ( | |
| proto, | |
| export_map, | |
| val_use_external_data_format, | |
| node_names, | |
| ) = graph._export_onnx( # type: ignore[attr-defined] | |
| {}, | |
| opset_version, | |
| dynamic_axes, | |
| False, | |
| operator_export_type, | |
| not verbose, | |
| val_keep_init_as_ip, | |
| custom_opsets, | |
| val_add_node_names, | |
| model_file_location, | |
| node_attr_to_name, | |
| ) | |
| # insert function_proto into model_proto. | |
| proto = onnx_proto_utils._add_onnxscript_fn( | |
| proto, | |
| custom_opsets, | |
| ) | |
| if verbose: | |
| torch.onnx.log("Exported graph: ", graph) | |
| onnx_proto_utils._export_file(proto, f, export_type, export_map) | |
| # The ONNX checker only works for ONNX graph. So if the operator_export_type is not ONNX, | |
| # we can skip this check. | |
| # If large model format export is enabled, proto will only contain data location instead of | |
| # raw data and _check_onnx_proto() will fail because it can only handle the raw ONNX proto | |
| # string in memory. | |
| if (operator_export_type is _C_onnx.OperatorExportTypes.ONNX) and ( | |
| not val_use_external_data_format | |
| ): | |
| try: | |
| _C._check_onnx_proto(proto) | |
| except RuntimeError as e: | |
| raise errors.CheckerError(e) from e | |
| finally: | |
| assert GLOBALS.in_onnx_export | |
| GLOBALS.in_onnx_export = False | |
| GLOBALS.autograd_inlining = _autograd_inlining_previous | |
| _reset_trace_module_map() | |
| return torch_out | |
| def _apply_friendly_debug_names(graph, params): | |
| for n in graph.nodes(): | |
| for v in n.inputs(): | |
| old_name = v.debugName() | |
| if old_name != str(v.unique()): | |
| continue | |
| new_name = f"{n.kind()}_{v.unique()}" | |
| v.setDebugName(new_name) | |
| if old_name in params: | |
| params[new_name] = params.pop(old_name) | |
| def _set_input_and_output_names(graph, input_names, output_names): | |
| def set_names(node_list, name_list, descriptor): | |
| if name_list is None: | |
| return | |
| if len(name_list) > len(node_list): | |
| raise RuntimeError( | |
| "number of %s names provided (%d) exceeded number of %ss (%d)" | |
| % (descriptor, len(name_list), descriptor, len(node_list)) | |
| ) | |
| # Mark if the output node DebugName is set before. | |
| output_node_set = set() | |
| for i, (name, node) in enumerate(zip(name_list, node_list)): | |
| # Duplicated output node, insert onnx::Identity to avoid setting the same DebugName after setDebugName(). | |
| if descriptor == "output": | |
| if node in output_node_set: | |
| identity_node = graph.create("onnx::Identity") | |
| identity_node.insertAfter(node.node()) | |
| identity_node.addInput(node) | |
| identity_node.output().setType(node.type()) | |
| graph.return_node().replaceInput(i, identity_node.output()) | |
| node = identity_node.output() | |
| output_node_set.add(node) | |
| if node.debugName() != name: | |
| node.setDebugName(name) | |
| set_names(list(graph.inputs()), input_names, "input") | |
| set_names(list(graph.outputs()), output_names, "output") | |
| def _run_symbolic_method(g, op_name, symbolic_fn, args): | |
| r""" | |
| This trampoline function gets invoked for every symbolic method | |
| call from C++. | |
| """ | |
| try: | |
| graph_context = jit_utils.GraphContext( | |
| graph=g, | |
| block=g.block(), | |
| opset=GLOBALS.export_onnx_opset_version, | |
| original_node=None, # type: ignore[arg-type] | |
| params_dict=_params_dict, | |
| env={}, | |
| ) | |
| return symbolic_fn(graph_context, *args) | |
| except TypeError as e: | |
| # Handle the specific case where we didn't successfully dispatch | |
| # to symbolic_fn. Otherwise, the backtrace will have the clues | |
| # you need. | |
| e.args = (f"{e.args[0]} (occurred when translating {op_name})",) | |
| raise | |
| def _add_block(node: _C.Node) -> _C.Block: | |
| return node.addBlock() | |
| def _add_input_to_block(block: _C.Block): | |
| return block.addInputToBlock() # type: ignore[attr-defined] | |
| def _add_output_to_block(block: _C.Block, value: _C.Value) -> int: | |
| return block.registerOutput(value) | |
| def _should_aten_fallback( | |
| name: str, opset_version: int, operator_export_type: _C_onnx.OperatorExportTypes | |
| ): | |
| # For BUILD_CAFFE2=0 builds, if domain=="aten" and operator_export_type==ONNX_ATEN, | |
| # an aten::ATen operator is created regardless of symbolics existence | |
| # For BUILD_CAFFE2=1, the same applies only if there is no symbolic available | |
| is_exportable_aten_op = registration.registry.is_registered_op(name, opset_version) | |
| is_onnx_aten_export = operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN | |
| is_aten_fallback_export = ( | |
| operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK | |
| ) | |
| is_caffe2_build = _C_onnx._CAFFE2_ATEN_FALLBACK | |
| if not name.startswith("aten::"): | |
| return False | |
| if is_caffe2_build: | |
| if ( | |
| is_onnx_aten_export or is_aten_fallback_export | |
| ) and not is_exportable_aten_op: | |
| return True | |
| else: | |
| if is_onnx_aten_export or ( | |
| is_aten_fallback_export and not is_exportable_aten_op | |
| ): | |
| return True | |
| return False | |
| def _need_symbolic_context(symbolic_fn: Callable) -> bool: | |
| """Checks if the first argument to symbolic_fn is annotated as type `torch.onnx.SymbolicContext`.""" | |
| params = tuple(inspect.signature(symbolic_fn).parameters.values()) | |
| # When the annotation is postpone-evaluated, the annotation is a string | |
| # and not a type. We need to use get_type_hints to get the real type. | |
| if not params: | |
| return False | |
| first_param_name = params[0].name | |
| type_hints = typing.get_type_hints(symbolic_fn) | |
| if first_param_name not in type_hints: | |
| return False | |
| param_type = type_hints[first_param_name] | |
| return issubclass(param_type, _exporter_states.SymbolicContext) | |
| def _symbolic_context_handler(symbolic_fn: Callable) -> Callable: | |
| """Decorator that provides the symbolic context to the symbolic function if needed.""" | |
| if _need_symbolic_context(symbolic_fn): | |
| # TODO(justinchuby): Update the module name of GraphContext when it is public | |
| warnings.warn( | |
| "The first argument to symbolic functions is deprecated in 1.13 and will be " | |
| "removed in the future. Please annotate treat the first argument (g) as GraphContext " | |
| "and use context information from the object instead.", | |
| category=FutureWarning, | |
| ) | |
| def wrapper(graph_context: jit_utils.GraphContext, *args, **kwargs): | |
| symbolic_context = _exporter_states.SymbolicContext( | |
| params_dict=graph_context.params_dict, | |
| env=graph_context.env, | |
| cur_node=graph_context.original_node, | |
| onnx_block=graph_context.block, | |
| ) | |
| return symbolic_fn(symbolic_context, graph_context, *args, **kwargs) | |
| return wrapper | |
| return symbolic_fn | |
| def _get_aten_op_overload_name(n: _C.Node) -> str: | |
| # Returns `overload_name` attribute to ATen ops on non-Caffe2 builds | |
| schema = n.schema() | |
| if not schema.startswith("aten::") or symbolic_helper.is_caffe2_aten_fallback(): | |
| return "" | |
| return _C.parse_schema(schema).overload_name | |
| def _run_symbolic_function( | |
| graph: _C.Graph, | |
| block: _C.Block, | |
| node: _C.Node, | |
| inputs: Any, | |
| env: Dict[_C.Value, _C.Value], | |
| operator_export_type=_C_onnx.OperatorExportTypes.ONNX, | |
| ) -> Optional[Union[_C.Value, Sequence[Optional[_C.Value]]]]: | |
| """Runs a symbolic function. | |
| The function is used in C++ to export the node to ONNX. | |
| Returns: | |
| A single or a tuple of Values. | |
| None when the node gets cloned as is into the new graph. | |
| """ | |
| opset_version = GLOBALS.export_onnx_opset_version | |
| # See Note [Export inplace] | |
| node_kind = node.kind() | |
| if node_kind.endswith("_"): | |
| # Treat relu_ -> relu; add_ -> add etc. | |
| ns_op_name = node_kind[:-1] | |
| else: | |
| ns_op_name = node_kind | |
| namespace, op_name = jit_utils.parse_node_kind(ns_op_name) | |
| graph_context = jit_utils.GraphContext( | |
| graph=graph, | |
| block=block, | |
| opset=opset_version, | |
| original_node=node, | |
| params_dict=_params_dict, | |
| env=env, | |
| ) | |
| # Direct ATen export requested | |
| if _should_aten_fallback(ns_op_name, opset_version, operator_export_type): | |
| attrs = { | |
| k + "_" + node.kindOf(k)[0]: symbolic_helper._node_get(node, k) | |
| for k in node.attributeNames() | |
| } | |
| outputs = node.outputsSize() | |
| attrs["outputs"] = outputs | |
| return graph_context.aten_op( | |
| op_name, | |
| *inputs, | |
| overload_name=_get_aten_op_overload_name(node), | |
| **attrs, | |
| ) | |
| try: | |
| # Caffe2-specific: Quantized op symbolics are registered for opset 9 only. | |
| if symbolic_helper.is_caffe2_aten_fallback() and opset_version == 9: | |
| symbolic_caffe2.register_quantized_ops("caffe2", opset_version) | |
| if namespace == "quantized" and symbolic_helper.is_caffe2_aten_fallback(): | |
| domain = "caffe2" | |
| else: | |
| domain = namespace | |
| symbolic_function_name = f"{domain}::{op_name}" | |
| symbolic_function_group = registration.registry.get_function_group( | |
| symbolic_function_name | |
| ) | |
| if symbolic_function_group is not None: | |
| symbolic_fn = symbolic_function_group.get(opset_version) | |
| if symbolic_fn is not None: | |
| # TODO Wrap almost identical attrs assignment or comment the difference. | |
| attrs = { | |
| k: symbolic_helper._node_get(node, k) for k in node.attributeNames() | |
| } | |
| return symbolic_fn(graph_context, *inputs, **attrs) | |
| attrs = { | |
| k + "_" + node.kindOf(k)[0]: symbolic_helper._node_get(node, k) | |
| for k in node.attributeNames() | |
| } | |
| if namespace == "onnx": | |
| # Clone node to trigger ONNX shape inference | |
| return graph_context.op(op_name, *inputs, **attrs, outputs=node.outputsSize()) # type: ignore[attr-defined] | |
| raise errors.UnsupportedOperatorError( | |
| symbolic_function_name, | |
| opset_version, | |
| symbolic_function_group.get_min_supported() | |
| if symbolic_function_group | |
| else None, | |
| ) | |
| except RuntimeError: | |
| if operator_export_type == _C_onnx.OperatorExportTypes.ONNX_FALLTHROUGH: | |
| return None | |
| elif ( | |
| operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK | |
| and not symbolic_helper.is_caffe2_aten_fallback() | |
| ): | |
| # Emit ATen op for non-Caffe2 builds when `operator_export_type==ONNX_ATEN_FALLBACK` | |
| attrs = { | |
| k + "_" + node.kindOf(k)[0]: symbolic_helper._node_get(node, k) | |
| for k in node.attributeNames() | |
| } | |
| return graph_context.aten_op( | |
| op_name, | |
| *inputs, | |
| overload_name=_get_aten_op_overload_name(node), | |
| **attrs, | |
| ) | |
| raise | |
| except TypeError as e: | |
| # Handle the specific case where we didn't successfully dispatch. | |
| # Otherwise, the backtrace will have the clues you need. | |
| e.args = (f"{e.args[0]} \n(Occurred when translating {op_name}).",) | |
| raise | |
| def _verify_custom_op_name(symbolic_name: str): | |
| if not re.match(r"^[a-zA-Z0-9-_]+::[a-zA-Z-_]+[a-zA-Z0-9-_]*$", symbolic_name): | |
| raise errors.OnnxExporterError( | |
| f"Failed to register operator {symbolic_name}. " | |
| "The symbolic name must match the format domain::name, " | |
| "and should start with a letter and contain only " | |
| "alphanumerical characters" | |
| ) | |
| ns, _ = jit_utils.parse_node_kind(symbolic_name) | |
| if ns == "onnx": | |
| raise ValueError( | |
| f"Failed to register operator {symbolic_name}. {ns} domain cannot be modified." | |
| ) | |
| def register_custom_op_symbolic( | |
| symbolic_name: str, | |
| symbolic_fn: Callable, | |
| opset_version: int, | |
| ): | |
| """Registers a symbolic function for a custom operator. | |
| When the user registers symbolic for custom/contrib ops, | |
| it is highly recommended to add shape inference for that operator via setType API, | |
| otherwise the exported graph may have incorrect shape inference in some extreme cases. | |
| An example of setType is `test_aten_embedding_2` in `test_operators.py`. | |
| See "Custom Operators" in the module documentation for an example usage. | |
| Args: | |
| symbolic_name (str): The name of the custom operator in "<domain>::<op>" | |
| format. | |
| symbolic_fn (Callable): A function that takes in the ONNX graph and | |
| the input arguments to the current operator, and returns new | |
| operator nodes to add to the graph. | |
| opset_version (int): The ONNX opset version in which to register. | |
| """ | |
| if symbolic_name.startswith("::"): | |
| symbolic_name = f"aten{symbolic_name}" | |
| _verify_custom_op_name(symbolic_name) | |
| registration.custom_onnx_symbolic( | |
| symbolic_name, | |
| opset_version, | |
| decorate=[ | |
| _symbolic_context_handler, | |
| ], | |
| )(symbolic_fn) | |
| def unregister_custom_op_symbolic(symbolic_name: str, opset_version: int): | |
| """Unregisters ``symbolic_name``. | |
| See "Custom Operators" in the module documentation for an example usage. | |
| Args: | |
| symbolic_name (str): The name of the custom operator in "<domain>::<op>" | |
| format. | |
| opset_version (int): The ONNX opset version in which to unregister. | |
| """ | |
| if symbolic_name.startswith("::"): | |
| symbolic_name = f"aten{symbolic_name}" | |
| _verify_custom_op_name(symbolic_name) | |
| registration.registry.unregister(symbolic_name, opset_version) | |
| def _validate_dynamic_axes(dynamic_axes, model, input_names, output_names): | |
| """Ensures dynamic axes argument is follows the expected format.""" | |
| if len(dynamic_axes) == 0: | |
| return | |
| if hasattr(model, "graph"): | |
| # Extracting set of valid input/output names that shall be used for dynamic_axes | |
| if (input_names is None) or len(input_names) == 0: | |
| input_names = [x.debugName() for x in model.graph.inputs()] | |
| if (output_names is None) or len(output_names) == 0: | |
| output_names = [y.debugName() for y in model.graph.outputs()] | |
| valid_names = set((input_names or []) + (output_names or [])) | |
| # If dynamic axes are provided as a list rather than dictionary, they should | |
| # first get converted to a dictionary in expected format. If desired axes names | |
| # are not provided for dynamic axes, automatic names shall be generated for | |
| # provided dynamic axes of specified input/output | |
| for key, value in dynamic_axes.items(): | |
| if key not in valid_names: | |
| warnings.warn( | |
| f"Provided key {key} for dynamic axes is not a valid input/output name" | |
| ) | |
| if isinstance(value, list): | |
| warnings.warn( | |
| "No names were found for specified dynamic axes of provided input." | |
| f"Automatically generated names will be applied to each dynamic axes of input {key}" | |
| ) | |
| value_dict = {} | |
| for i, x in enumerate(value): | |
| if not isinstance(x, int): | |
| raise ValueError( | |
| "The type of axis index is expected to be an integer" | |
| ) | |
| if x in value_dict: | |
| warnings.warn( | |
| f"Duplicate dynamic axis index {x} was provided for input {key}." | |
| ) | |
| else: | |
| value_dict[x] = str(key) + "_dynamic_axes_" + str(i + 1) | |
| dynamic_axes[key] = value_dict | |
| def model_signature(model: Union[torch.nn.Module, Callable]) -> inspect.Signature: | |
| return inspect.signature( | |
| model.forward if isinstance(model, torch.nn.Module) else model | |
| ) | |