Spaces:
Sleeping
Sleeping
| from __future__ import annotations | |
| import functools | |
| import sys | |
| import warnings | |
| from typing import List, Optional, Sequence, Tuple, Union | |
| import torch | |
| import torch._C._onnx as _C_onnx | |
| import torch.onnx | |
| from torch import _C | |
| # Monkey-patch graph manipulation methods on Graph, used for the ONNX symbolics | |
| from torch.onnx import ( | |
| _constants, | |
| _type_utils, | |
| errors, | |
| symbolic_helper, | |
| symbolic_opset9 as opset9, | |
| ) | |
| from torch.onnx._globals import GLOBALS | |
| from torch.onnx._internal import _beartype, jit_utils, registration | |
| # EDITING THIS FILE? READ THIS FIRST! | |
| # see Note [Edit Symbolic Files] in README.md | |
| # This file exports ONNX ops for opset 10 | |
| # Opset 10 is supported by ONNX release 1.5.0 | |
| # release on 04/24/19 | |
| __all__ = [ | |
| "dequantize", | |
| "div", | |
| "embedding_bag", | |
| "fake_quantize_per_tensor_affine", | |
| "flip", | |
| "fmod", | |
| "isfinite", | |
| "isinf", | |
| "nan_to_num", | |
| "quantize_per_tensor", | |
| "quantized_add_relu", | |
| "quantized_add", | |
| "quantized_cat", | |
| "quantized_conv1d_relu", | |
| "quantized_conv2d_relu", | |
| "quantized_conv3d_relu", | |
| "quantized_conv1d", | |
| "quantized_conv2d", | |
| "quantized_conv3d", | |
| "quantized_conv_transpose1d", | |
| "quantized_conv_transpose2d", | |
| "quantized_conv_transpose3d", | |
| "quantized_group_norm", | |
| "quantized_hardswish", | |
| "quantized_instance_norm", | |
| "quantized_layer_norm", | |
| "quantized_leaky_relu", | |
| "quantized_linear", | |
| "quantized_linear_relu", | |
| "quantized_mul", | |
| "quantized_sigmoid", | |
| "slice", | |
| "sort", | |
| "topk", | |
| ] | |
| _onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=10) | |
| def _apply_params(*args, **kwargs): | |
| """Returns a decorator that calls the decorated (higher-order) function with the given parameters.""" | |
| def _apply(fn): | |
| return fn(*args, **kwargs) | |
| return _apply | |
| def div(g: jit_utils.GraphContext, self, other, *args): | |
| if len(args) == 0: | |
| return opset9.true_divide(g, self, other) | |
| else: | |
| return _div_rounding_mode(g, self, other, *args) | |
| def _div_rounding_mode(g: jit_utils.GraphContext, self, other, rounding_mode): | |
| if rounding_mode == "floor": | |
| return _floor_divide(g, self, other) | |
| else: | |
| return opset9._div_rounding_mode(g, self, other, rounding_mode) | |
| def _floor_divide(g: jit_utils.GraphContext, self, other): | |
| if symbolic_helper._is_fp(self) or symbolic_helper._is_fp(other): | |
| out = opset9.true_divide(g, self, other) | |
| return g.op("Floor", out) | |
| else: | |
| # Integer division does trunction rounding | |
| div = g.op("Div", self, other) | |
| # Division is negative if: self < 0 != other < 0 | |
| zero = g.op("Constant", value_t=torch.tensor(0, dtype=torch.int64)) | |
| negative = g.op("Xor", g.op("Less", self, zero), g.op("Less", other, zero)) | |
| # For negative numbers with self % other != 0, subtract 1 to round down instead of up | |
| mod = g.op("Mod", self, other, fmod_i=0) | |
| fixup_mask = g.op("And", negative, g.op("Not", g.op("Equal", mod, zero))) | |
| one = g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)) | |
| fixup = g.op("Sub", div, one) | |
| return g.op("Where", fixup_mask, fixup, div) | |
| def sort(g: jit_utils.GraphContext, self, dim, decending, out=None): | |
| return symbolic_helper._sort_helper(g, self, dim, decending=decending, out=out) | |
| def topk(g: jit_utils.GraphContext, self, k, dim, largest, sorted, out=None): | |
| return symbolic_helper._topk_helper( | |
| g, self, k, dim, largest=largest, sorted=sorted, out=out | |
| ) | |
| def _aten_max_pool_onnx( | |
| g: jit_utils.GraphContext, | |
| self: _C.Value, | |
| kernel_shape: Sequence[int], | |
| strides: Sequence[int], | |
| pads: Sequence[int], | |
| dilations: Sequence[int], | |
| ceil_mode: bool, | |
| unbatched_rank: int, | |
| ) -> _C.Value: | |
| self_rank = g.op("Size", g.op("Shape", self)) | |
| if self_rank == unbatched_rank: # C,H,W -> N,C,H,W and N=1 | |
| self = g.op( | |
| "Unsqueeze", | |
| self, | |
| g.op("Constant", value_t=torch.tensor([0], dtype=torch.int64)), | |
| ) | |
| pool_result, _ = g.op( | |
| "MaxPool", | |
| self, | |
| outputs=2, | |
| ceil_mode_i=ceil_mode, | |
| dilations_i=dilations, | |
| kernel_shape_i=kernel_shape, | |
| pads_i=pads, | |
| strides_i=strides, | |
| ) | |
| if self_rank == unbatched_rank: | |
| pool_result = g.op( | |
| "Squeeze", | |
| pool_result, | |
| g.op("Constant", value_t=torch.tensor([0], dtype=torch.int64)), | |
| ) | |
| return pool_result | |
| # For MaxPool | |
| def _adjust_attributes_of_max_pool( | |
| expand_size: int, | |
| kernel_size: Union[Sequence[int], int], | |
| stride: Union[Sequence[int], int], | |
| padding: Union[Sequence[int], int], | |
| dilation: Union[Sequence[int], int], | |
| ) -> Tuple[Sequence[int], Sequence[int], Sequence[int], Sequence[int]]: | |
| """Adjust attributes of avg_pool to match ONNX specification.""" | |
| if isinstance(dilation, int): | |
| dilation = [dilation] * expand_size | |
| if isinstance(kernel_size, int): | |
| kernel_shape = [kernel_size] * expand_size | |
| else: | |
| kernel_shape = kernel_size # type: ignore[assignment] | |
| if isinstance(padding, int): | |
| pads = [padding] * expand_size * 2 # type: ignore[operator, assignment] | |
| elif len(padding) == 1: | |
| pads = padding * expand_size * 2 # type: ignore[operator, assignment] | |
| elif len(padding) == 2: | |
| # 2D padding | |
| pads = padding * 2 # type: ignore[operator, assignment] | |
| elif len(padding) == 3: | |
| # 3D padding | |
| pads = padding * 2 # type: ignore[operator, assignment] | |
| else: | |
| # When padding is already done for all dimensions, | |
| # we don't need to double it | |
| # eg: (1, 1, 1, 1, 1, 1) | |
| pads = padding # type: ignore[assignment] | |
| if isinstance(stride, int): | |
| strides = [stride] * expand_size | |
| elif not stride: | |
| strides = kernel_shape | |
| else: | |
| strides = stride # type: ignore[assignment] | |
| return (kernel_shape, strides, pads, dilation) | |
| def _aten_max_pool_with_indices_onnx( | |
| g: jit_utils.GraphContext, | |
| self: _C.Value, | |
| kernel_shape: Sequence[int], | |
| strides: Sequence[int], | |
| pads: Sequence[int], | |
| dilations: Sequence[int], | |
| ceil_mode: bool, | |
| unbatched_rank: int, | |
| n_dims_one: Sequence[int], | |
| n_dims_zero: Sequence[int], | |
| n_dims_axes: Sequence[int], | |
| ) -> Tuple[_C.Value, Sequence[int]]: | |
| self_rank = g.op("Size", g.op("Shape", self)) | |
| if self_rank == unbatched_rank: # C,H,W -> N,C,H,W and N=1 | |
| self = g.op( | |
| "Unsqueeze", | |
| self, | |
| g.op("Constant", value_t=torch.tensor([0], dtype=torch.int64)), | |
| ) | |
| pool_result, indices = g.op( | |
| "MaxPool", | |
| self, | |
| outputs=2, | |
| ceil_mode_i=ceil_mode, | |
| dilations_i=dilations, | |
| kernel_shape_i=kernel_shape, | |
| pads_i=pads, | |
| strides_i=strides, | |
| ) | |
| _, flatten_indices = g.op( | |
| "MaxPool", | |
| self, | |
| outputs=2, | |
| dilations_i=dilations, | |
| kernel_shape_i=n_dims_one, | |
| strides_i=n_dims_one, | |
| ) | |
| ends = g.op("Constant", value_t=torch.tensor(n_dims_one)) | |
| starts = g.op("Constant", value_t=torch.tensor(n_dims_zero)) | |
| axes = g.op("Constant", value_t=torch.tensor(n_dims_axes)) | |
| delta = g.op("Slice", flatten_indices, starts, ends, axes) | |
| indices = g.op("Sub", indices, delta) | |
| if self_rank == unbatched_rank: | |
| pool_result = g.op( | |
| "Squeeze", pool_result, value_t=torch.tensor([0], dtype=torch.int64) | |
| ) | |
| indices = g.op("Squeeze", indices, value_t=torch.tensor([0], dtype=torch.int64)) | |
| return (pool_result, indices) | |
| def _max_pool(name: str, expand_size: int, return_indices: bool): | |
| def symbolic_fn( | |
| g: jit_utils.GraphContext, | |
| input: _C.Value, | |
| kernel_size: Sequence[int], | |
| stride: Sequence[int], | |
| padding: Union[int, Sequence[int]], | |
| dilation: Sequence[int], | |
| ceil_mode: bool, | |
| ): | |
| kernel_shape, strides, pads, dilations = _adjust_attributes_of_max_pool( | |
| expand_size, kernel_size, stride, padding, dilation | |
| ) | |
| if return_indices: | |
| return _aten_max_pool_with_indices_onnx( | |
| g, | |
| input, | |
| kernel_shape, | |
| strides, | |
| pads, | |
| dilations, | |
| ceil_mode, | |
| expand_size + 1, | |
| ([1] * expand_size), | |
| ([0] * expand_size), | |
| ([2 + i for i in range(expand_size)]), | |
| ) | |
| else: | |
| return _aten_max_pool_onnx( | |
| g, | |
| input, | |
| kernel_shape, | |
| strides, | |
| pads, | |
| dilations, | |
| ceil_mode, | |
| expand_size + 1, | |
| ) | |
| return symbolic_fn | |
| # For AvgPool | |
| def _adjust_attributes_of_avg_pool( | |
| expand_size: int, | |
| kernel_size: Union[Sequence[int], int], | |
| stride: Union[Sequence[int], int], | |
| padding: Union[Sequence[int], int], | |
| ) -> Tuple[Sequence[int], Sequence[int], Sequence[int]]: | |
| """Adjust attributes of avg_pool to match ONNX specification.""" | |
| if isinstance(kernel_size, int): | |
| kernel_shape = [kernel_size] * expand_size | |
| else: | |
| kernel_shape = kernel_size # type: ignore[assignment] | |
| if isinstance(padding, int): | |
| pads = [padding] * expand_size * 2 | |
| elif len(padding) == 1: | |
| pads = padding * expand_size * 2 # type: ignore[operator, assignment] | |
| elif len(padding) == 2: | |
| pads = padding * expand_size # type: ignore[operator, assignment] | |
| else: | |
| pads = padding * 2 # type: ignore[operator, assignment] | |
| if isinstance(stride, int): | |
| strides = [stride] * expand_size | |
| elif not stride: | |
| strides = kernel_shape | |
| else: | |
| strides = stride # type: ignore[assignment] | |
| return (kernel_shape, strides, pads) | |
| def _avg_pool(name, expand_size): | |
| def symbolic_fn( | |
| g, | |
| input: _C.Value, | |
| kernel_size: Sequence[int], | |
| stride: Sequence[int], | |
| padding: Union[int, Sequence[int]], | |
| ceil_mode: int, | |
| count_include_pad: int, | |
| divisor_override=None, | |
| ): | |
| kernel_shape, strides, pads = _adjust_attributes_of_avg_pool( | |
| expand_size, kernel_size, stride, padding | |
| ) | |
| result = g.op( | |
| "AveragePool", | |
| input, | |
| ceil_mode_i=ceil_mode, | |
| count_include_pad_i=count_include_pad, | |
| kernel_shape_i=kernel_shape, | |
| pads_i=pads, | |
| strides_i=strides, | |
| ) | |
| return result | |
| return symbolic_fn | |
| def _interpolate(name, dim, interpolate_mode): | |
| def symbolic_fn(g, input, output_size, *args): | |
| scales, align_corners = symbolic_helper._get_interpolate_attributes( | |
| g, interpolate_mode, args | |
| ) | |
| symbolic_helper._interpolate_warning(interpolate_mode) | |
| align_corners = symbolic_helper._maybe_get_scalar(align_corners) | |
| if align_corners: | |
| return symbolic_helper._unimplemented(name, "align_corners == True", input) | |
| if scales is None: | |
| scales = symbolic_helper._interpolate_size_to_scales( | |
| g, input, output_size, dim | |
| ) | |
| return g.op("Resize", input, scales, mode_s=interpolate_mode) | |
| return symbolic_fn | |
| def __interpolate( | |
| g: jit_utils.GraphContext, | |
| input, | |
| size, | |
| scale_factor, | |
| mode, | |
| align_corners, | |
| recompute_scale_factor, | |
| antialias, | |
| ): | |
| scales, mode = symbolic_helper._interpolate_get_scales_and_mode( | |
| g, input, size, scale_factor, mode, align_corners | |
| ) | |
| return g.op("Resize", input, scales, mode_s=mode) | |
| def _slice( | |
| g: jit_utils.GraphContext, | |
| input: torch._C.Value, | |
| axes: Union[List, torch.Tensor, torch._C.Value], | |
| starts: Union[List, torch.Tensor, torch._C.Value], | |
| ends: Union[List, torch.Tensor, torch._C.Value], | |
| steps: Optional[Union[List, torch.Tensor, torch._C.Value]] = None, | |
| ): | |
| def is_none_value(value): | |
| if value is None: | |
| return True | |
| return ( | |
| isinstance(value, torch._C.Value) | |
| and value.node().kind() == "prim::Constant" | |
| and isinstance(value.type(), _C.NoneType) | |
| ) | |
| def to_slice_input(list_or_value, default_value=None): | |
| # Convert input param into a 1D torch.Value. | |
| if is_none_value(list_or_value) and default_value is not None: | |
| list_or_value = [default_value] | |
| if isinstance(list_or_value, (list, torch.Tensor)): | |
| return g.op("Constant", value_t=torch.tensor(list_or_value)) | |
| rank = symbolic_helper._get_tensor_rank(list_or_value) | |
| if rank == 0: | |
| return symbolic_helper._unsqueeze_helper(g, list_or_value, [0]) | |
| if rank == 1: | |
| return list_or_value | |
| raise errors.SymbolicValueError( | |
| f"Rank must be 0 or 1, not {rank}", list_or_value | |
| ) | |
| def get_const_value(list_or_value): | |
| if isinstance(list_or_value, (list, torch.Tensor)): | |
| if len(list_or_value) == 1: | |
| return list_or_value[0] | |
| return None | |
| return symbolic_helper._maybe_get_const(list_or_value, "i") | |
| # Check if slice is a no-op | |
| if ( | |
| get_const_value(starts) == 0 | |
| and get_const_value(ends) == _constants.INT64_MAX | |
| and (steps is None or get_const_value(steps) == 1) | |
| ): | |
| return input | |
| axes = to_slice_input(axes) | |
| starts = to_slice_input(starts, default_value=0) | |
| ends = to_slice_input(ends, default_value=_constants.INT64_MAX) | |
| if steps is None: | |
| return g.op("Slice", input, starts, ends, axes) | |
| steps = to_slice_input(steps, default_value=1) | |
| return g.op("Slice", input, starts, ends, axes, steps) | |
| def slice(g: jit_utils.GraphContext, self, *args): | |
| if len(args) == 4: | |
| # aten::slice(Tensor self, int dim, int? start=None, int? end=None, int step=1) -> Tensor | |
| dims, start, end, step = args | |
| elif len(args) == 3: | |
| # aten::slice(t[] l, int? start=None, int? end=None, int step=1) -> t[] | |
| start, end, step = args | |
| dims = [0] | |
| else: | |
| raise errors.SymbolicValueError("Unknown aten::slice signature", self) | |
| return symbolic_helper._slice_helper( | |
| g, | |
| self, | |
| axes=dims, | |
| starts=start, | |
| ends=end, | |
| steps=step, | |
| ) | |
| def flip(g: jit_utils.GraphContext, input, dims): | |
| return symbolic_helper._slice_helper( | |
| g, | |
| input, | |
| axes=dims, | |
| starts=[-1] * len(dims), | |
| ends=[-_constants.INT64_MAX] * len(dims), | |
| steps=[-1] * len(dims), | |
| ) | |
| def fmod(g: jit_utils.GraphContext, input, other): | |
| return g.op("Mod", input, other, fmod_i=1) | |
| def embedding_bag( | |
| g: jit_utils.GraphContext, | |
| embedding_matrix, | |
| indices, | |
| offsets, | |
| scale_grad_by_freq, | |
| mode, | |
| sparse, | |
| per_sample_weights, | |
| include_last_offset, | |
| padding_idx, | |
| ): | |
| if scale_grad_by_freq and GLOBALS.export_training: | |
| return symbolic_helper._onnx_unsupported( | |
| "embedding_bag with scale_grad_by_freq for training mode" | |
| ) | |
| if padding_idx is not None and padding_idx >= 0: | |
| raise RuntimeError("embedding_bag with padding_idx") | |
| warnings.warn( | |
| "Export of embedding_bag with dynamic input/offsets shape is not supported in opset 10. " | |
| "Please use opset 11 or higher to export model for dynamic input shape.'" | |
| ) | |
| offsets_dim_0 = symbolic_helper._get_tensor_dim_size(offsets, 0) | |
| if offsets_dim_0 is not None: | |
| if include_last_offset: | |
| offset_len = offsets_dim_0 - 1 | |
| offsets_extended = offsets | |
| else: | |
| offset_len = offsets_dim_0 | |
| offsets_extended = [ | |
| offsets, | |
| g.op("Constant", value_t=torch.tensor([sys.maxsize])), | |
| ] | |
| offsets_extended = g.op("Concat", *offsets_extended, axis_i=0) | |
| list_ = [] | |
| for i in range(offset_len): | |
| start_ = symbolic_helper._unsqueeze_helper( | |
| g, | |
| opset9.select(g, offsets_extended, torch.tensor(0), torch.tensor(i)), | |
| [0], | |
| ) | |
| end_ = symbolic_helper._unsqueeze_helper( | |
| g, | |
| opset9.select( | |
| g, offsets_extended, torch.tensor(0), torch.tensor(i + 1) | |
| ), | |
| [0], | |
| ) | |
| axes_ = g.op("Constant", value_t=torch.tensor([0])) | |
| indices_row = g.op("Slice", indices, start_, end_, axes_) | |
| embeddings = g.op("Gather", embedding_matrix, indices_row) | |
| if not symbolic_helper._is_none(per_sample_weights): | |
| per_sample_weights_row = g.op( | |
| "Slice", per_sample_weights, start_, end_, axes_ | |
| ) | |
| per_sample_weights_row = symbolic_helper._unsqueeze_helper( | |
| g, per_sample_weights_row, [1] | |
| ) | |
| embeddings = g.op("Mul", embeddings, per_sample_weights_row) | |
| if mode == 0: | |
| embeddings = symbolic_helper._reducesum_helper( | |
| g, embeddings, axes_i=[0], keepdims_i=0 | |
| ) | |
| elif mode == 1: | |
| embeddings = g.op("ReduceMean", embeddings, axes_i=[0], keepdims_i=0) | |
| else: | |
| embeddings = g.op("ReduceMax", embeddings, axes_i=[0], keepdims_i=0) | |
| embeddings = symbolic_helper._unsqueeze_helper(g, embeddings, [0]) | |
| list_.append(embeddings) | |
| output = g.op("Concat", *list_, axis_i=0) | |
| # aten::embedding_bag returns a tuple of 4 elements: output, offset2bag, bag_size, max_indices. | |
| # But the last three outputs are not used in torch.nn.EmbeddingBag or torch.nn.functional.embedding_bag. | |
| return output, None, None, None | |
| else: | |
| return symbolic_helper._onnx_unsupported( | |
| "embedding_bag with unknown shape of offsets for opset 10 is not supported. " | |
| "please use opset 11 or higher." | |
| ) | |
| def fake_quantize_per_tensor_affine( | |
| g: jit_utils.GraphContext, | |
| inputs, | |
| scale, | |
| zero_point, | |
| quant_min=-128, | |
| quant_max=127, | |
| ): | |
| # NOTE: (0, 127) is a special case. PyTorch restricts activations to be in the range (0, 127). | |
| # https://github.com/pytorch/pytorch/blob/b34b192d6b97325c9f78e5995c48c8498ede34bd/torch/ao/quantization/observer.py#L1422 | |
| if (quant_min, quant_max) == (0, 127): | |
| symbolic_helper._onnx_opset_unsupported_detailed( | |
| "fake_quantize_per_tensor_affine", | |
| 10, | |
| 13, | |
| "Quantize range (0, 127) not supported, requires opset 13 Clip", | |
| inputs, | |
| ) | |
| if (quant_min, quant_max) not in [(0, 255), (-128, 127)]: | |
| raise errors.SymbolicValueError( | |
| f"For (quant_min, quant_max), ONNX allows only (0, 255) and (-128, 127). " | |
| f"Got ({quant_min}, {quant_max})", | |
| inputs, | |
| ) | |
| scale = symbolic_helper._maybe_get_scalar(scale) | |
| if scale is None: | |
| symbolic_helper._onnx_opset_unsupported_detailed( | |
| "fake_quantize_per_tensor_affine", | |
| 10, | |
| 13, | |
| "Non-constant scale not supported", | |
| inputs, | |
| ) | |
| scale = scale.float().data # Avoid exporter generating double type | |
| if quant_min == 0: | |
| zero_point = g.op("Cast", zero_point, to_i=_C_onnx.TensorProtoDataType.UINT8) | |
| else: | |
| zero_point = g.op("Cast", zero_point, to_i=_C_onnx.TensorProtoDataType.INT8) | |
| return g.op( | |
| "DequantizeLinear", | |
| g.op("QuantizeLinear", inputs, scale, zero_point), | |
| scale, | |
| zero_point, | |
| ) | |
| def isinf(g: jit_utils.GraphContext, input): | |
| return g.op("IsInf", g.op("Cast", input, to_i=_C_onnx.TensorProtoDataType.DOUBLE)) | |
| def isfinite(g: jit_utils.GraphContext, input): | |
| inf_node = isinf(g, input) | |
| nan_node = opset9.isnan(g, input) | |
| return opset9.__not_(g, opset9.__or_(g, inf_node, nan_node)) | |
| def quantize_per_tensor(g: jit_utils.GraphContext, input, scale, zero_point, dtype): | |
| dtype = symbolic_helper._get_const(dtype, "i", "dtype") | |
| # TODO(justinchuby): Extract all the cast ops into a helper function. | |
| zero_point = g.op( | |
| "Cast", zero_point, to_i=_type_utils.JitScalarType(dtype).onnx_type() | |
| ) | |
| scale = g.op("Cast", scale, to_i=_C_onnx.TensorProtoDataType.FLOAT) | |
| return symbolic_helper.quantize_helper(g, input, scale, zero_point) | |
| def dequantize(g: jit_utils.GraphContext, input): | |
| return symbolic_helper.dequantize_helper(g, input)[0] | |
| def nan_to_num(g: jit_utils.GraphContext, input, nan, posinf, neginf): | |
| # Cannot create a int type tensor with inf/nan values, so we simply | |
| # return the original tensor | |
| if not symbolic_helper._is_fp(input): | |
| return input | |
| input_dtype = _type_utils.JitScalarType.from_value(input).dtype() | |
| if nan is None: | |
| nan = 0.0 | |
| nan_cond = opset9.isnan(g, input) | |
| nan_result = g.op( | |
| "Where", | |
| nan_cond, | |
| g.op("Constant", value_t=torch.tensor([nan], dtype=input_dtype)), | |
| input, | |
| ) | |
| # For None values of posinf, neginf we use the greatest/lowest finite | |
| # value representable by input’s dtype. | |
| finfo = torch.finfo(input_dtype) | |
| if posinf is None: | |
| posinf = finfo.max | |
| posinf_cond = opset9.logical_and( | |
| g, | |
| isinf(g, nan_result), | |
| opset9.gt(g, nan_result, g.op("Constant", value_t=torch.LongTensor([0]))), | |
| ) | |
| nan_posinf_result = g.op( | |
| "Where", | |
| posinf_cond, | |
| g.op("Constant", value_t=torch.tensor([posinf], dtype=input_dtype)), | |
| nan_result, | |
| ) | |
| if neginf is None: | |
| neginf = finfo.min | |
| neginf_cond = opset9.logical_and( | |
| g, | |
| isinf(g, nan_posinf_result), | |
| opset9.lt( | |
| g, nan_posinf_result, g.op("Constant", value_t=torch.LongTensor([0])) | |
| ), | |
| ) | |
| return g.op( | |
| "Where", | |
| neginf_cond, | |
| g.op("Constant", value_t=torch.tensor([neginf], dtype=input_dtype)), | |
| nan_posinf_result, | |
| ) | |
| # Quantized symbolics --------------------------------------------------------- | |
| # https://github.com/pytorch/pytorch/wiki/PyTorch-ONNX-exporter#quantized-model-export | |
| # Support starts from opset 10 because `DequantizeLinear` and `QuantizeLinear` were | |
| # introduced in opset version 10. | |
| def quantized_linear( | |
| g: jit_utils.GraphContext, q_input, q_weight, bias, op_scale, op_zero_point | |
| ): | |
| input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input) | |
| weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight) | |
| q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale) | |
| bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias) | |
| output = opset9.linear(g, input, weight, bias) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_linear_relu( | |
| g: jit_utils.GraphContext, q_input, q_weight, bias, op_scale, op_zero_point | |
| ): | |
| input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input) | |
| weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight) | |
| q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale) | |
| bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias) | |
| output = opset9.linear(g, input, weight, bias) | |
| output = opset9.relu(g, output) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_add(g: jit_utils.GraphContext, x, y, op_scale, op_zero_point): | |
| x, _, _, _ = symbolic_helper.dequantize_helper(g, x) | |
| y, _, _, _ = symbolic_helper.dequantize_helper(g, y) | |
| output = opset9.add(g, x, y) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_add_relu(g: jit_utils.GraphContext, x, y, op_scale, op_zero_point): | |
| x, _, _, _ = symbolic_helper.dequantize_helper(g, x) | |
| y, _, _, _ = symbolic_helper.dequantize_helper(g, y) | |
| output = opset9.add(g, x, y) | |
| output = opset9.relu(g, output) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_mul(g: jit_utils.GraphContext, x, y, op_scale, op_zero_point): | |
| x, _, _, _ = symbolic_helper.dequantize_helper(g, x) | |
| y, _, _, _ = symbolic_helper.dequantize_helper(g, y) | |
| output = opset9.mul(g, x, y) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_hardswish(g: jit_utils.GraphContext, x, op_scale, op_zero_point): | |
| x, _, _, _ = symbolic_helper.dequantize_helper(g, x) | |
| output = opset9.hardswish(g, x) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_sigmoid(g: jit_utils.GraphContext, x, op_scale, op_zero_point): | |
| x, _, _, _ = symbolic_helper.dequantize_helper(g, x) | |
| output = opset9.sigmoid(g, x) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_leaky_relu( | |
| g: jit_utils.GraphContext, x, negative_slope, inplace, op_scale, op_zero_point | |
| ): | |
| x, _, _, _ = symbolic_helper.dequantize_helper(g, x) | |
| output = opset9.leaky_relu(g, x, negative_slope, inplace) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_layer_norm( | |
| g: jit_utils.GraphContext, | |
| x, | |
| normalized_shape, | |
| weight, | |
| bias, | |
| eps, | |
| op_scale, | |
| op_zero_point, | |
| ): | |
| x, _, _, _ = symbolic_helper.dequantize_helper(g, x) | |
| output = opset9.layer_norm(g, x, normalized_shape, weight, bias, eps, False) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_group_norm( | |
| g: jit_utils.GraphContext, | |
| x, | |
| num_groups, | |
| weight, | |
| bias, | |
| eps, | |
| op_scale, | |
| op_zero_point, | |
| ): | |
| x, _, _, _ = symbolic_helper.dequantize_helper(g, x) | |
| output = opset9.group_norm(g, x, num_groups, weight, bias, eps, False) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_instance_norm( | |
| g: jit_utils.GraphContext, | |
| q_input, | |
| weight, | |
| bias, | |
| eps, | |
| op_scale, | |
| op_zero_point, | |
| ): | |
| input, _, _, _ = symbolic_helper.dequantize_helper(g, q_input) | |
| output = opset9.instance_norm( | |
| g, input, weight, bias, None, None, False, 0.0, eps, False | |
| ) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_conv1d_relu( | |
| g: jit_utils.GraphContext, | |
| q_input, | |
| q_weight, | |
| bias, | |
| stride, | |
| padding, | |
| dilation, | |
| groups, | |
| op_scale, | |
| op_zero_point, | |
| ): | |
| input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input) | |
| weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight) | |
| q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale) | |
| bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias) | |
| output = opset9.conv1d(g, input, weight, bias, stride, padding, dilation, groups) | |
| output = opset9.relu(g, output) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_conv2d_relu( | |
| g: jit_utils.GraphContext, | |
| q_input, | |
| q_weight, | |
| bias, | |
| stride, | |
| padding, | |
| dilation, | |
| groups, | |
| op_scale, | |
| op_zero_point, | |
| ): | |
| input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input) | |
| weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight) | |
| q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale) | |
| bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias) | |
| output = opset9.conv2d(g, input, weight, bias, stride, padding, dilation, groups) | |
| output = opset9.relu(g, output) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_conv3d_relu( | |
| g: jit_utils.GraphContext, | |
| q_input, | |
| q_weight, | |
| bias, | |
| stride, | |
| padding, | |
| dilation, | |
| groups, | |
| op_scale, | |
| op_zero_point, | |
| ): | |
| input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input) | |
| weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight) | |
| q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale) | |
| bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias) | |
| output = opset9.conv3d(g, input, weight, bias, stride, padding, dilation, groups) | |
| output = opset9.relu(g, output) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_conv1d( | |
| g: jit_utils.GraphContext, | |
| q_input, | |
| q_weight, | |
| bias, | |
| stride, | |
| padding, | |
| dilation, | |
| groups, | |
| op_scale, | |
| op_zero_point, | |
| ): | |
| input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input) | |
| weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight) | |
| q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale) | |
| bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias) | |
| output = opset9.conv1d(g, input, weight, bias, stride, padding, dilation, groups) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_conv2d( | |
| g: jit_utils.GraphContext, | |
| q_input, | |
| q_weight, | |
| bias, | |
| stride, | |
| padding, | |
| dilation, | |
| groups, | |
| op_scale, | |
| op_zero_point, | |
| ): | |
| input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input) | |
| weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight) | |
| q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale) | |
| bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias) | |
| output = opset9.conv2d(g, input, weight, bias, stride, padding, dilation, groups) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_conv3d( | |
| g: jit_utils.GraphContext, | |
| q_input, | |
| q_weight, | |
| bias, | |
| stride, | |
| padding, | |
| dilation, | |
| groups, | |
| op_scale, | |
| op_zero_point, | |
| ): | |
| input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input) | |
| weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight) | |
| q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale) | |
| bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias) | |
| output = opset9.conv3d(g, input, weight, bias, stride, padding, dilation, groups) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_conv_transpose1d( | |
| g: jit_utils.GraphContext, | |
| q_input, | |
| q_weight, | |
| bias, | |
| stride, | |
| padding, | |
| output_padding, | |
| dilation, | |
| groups, | |
| op_scale, | |
| op_zero_point, | |
| ): | |
| input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input) | |
| weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight) | |
| q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale) | |
| bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias) | |
| output = opset9.conv_transpose2d( | |
| g, input, weight, bias, stride, padding, output_padding, groups, dilation | |
| ) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_conv_transpose2d( | |
| g: jit_utils.GraphContext, | |
| q_input, | |
| q_weight, | |
| bias, | |
| stride, | |
| padding, | |
| output_padding, | |
| dilation, | |
| groups, | |
| op_scale, | |
| op_zero_point, | |
| ): | |
| input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input) | |
| weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight) | |
| q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale) | |
| bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias) | |
| output = opset9.conv_transpose2d( | |
| g, input, weight, bias, stride, padding, output_padding, groups, dilation | |
| ) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_conv_transpose3d( | |
| g: jit_utils.GraphContext, | |
| q_input, | |
| q_weight, | |
| bias, | |
| stride, | |
| padding, | |
| output_padding, | |
| dilation, | |
| groups, | |
| op_scale, | |
| op_zero_point, | |
| ): | |
| input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input) | |
| weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight) | |
| q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale) | |
| bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias) | |
| output = opset9.conv_transpose3d( | |
| g, input, weight, bias, stride, padding, output_padding, groups, dilation | |
| ) | |
| return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) | |
| def quantized_cat( | |
| g: jit_utils.GraphContext, | |
| q_inputs: _C.Value, | |
| dim: int, | |
| op_scale: _C.Value, | |
| op_zero_point: _C.Value, | |
| ) -> _C.Value: | |
| unpacked_inputs = symbolic_helper._unpack_list(q_inputs) | |
| dequantized = [ | |
| symbolic_helper.dequantize_helper(g, input)[0] for input in unpacked_inputs | |
| ] | |
| concatenated = g.op("Concat", *dequantized, axis_i=dim) | |
| return symbolic_helper.quantize_helper(g, concatenated, op_scale, op_zero_point) | |