Spaces:
Sleeping
Sleeping
"""Globals used internally by the ONNX exporter. | |
Do not use this module outside of `torch.onnx` and its tests. | |
Be very judicious when adding any new global variables. Do not create new global | |
variables unless they are absolutely necessary. | |
""" | |
import torch._C._onnx as _C_onnx | |
# This module should only depend on _constants and nothing else in torch.onnx to keep | |
# dependency direction clean. | |
from torch.onnx import _constants | |
class _InternalGlobals: | |
"""Globals used internally by ONNX exporter. | |
NOTE: Be very judicious when adding any new variables. Do not create new | |
global variables unless they are absolutely necessary. | |
""" | |
def __init__(self): | |
self._export_onnx_opset_version = _constants.ONNX_DEFAULT_OPSET | |
self._training_mode: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL | |
self._in_onnx_export: bool = False | |
# Whether the user's model is training during export | |
self.export_training: bool = False | |
self.operator_export_type: _C_onnx.OperatorExportTypes = ( | |
_C_onnx.OperatorExportTypes.ONNX | |
) | |
self.onnx_shape_inference: bool = True | |
self._autograd_inlining: bool = True | |
def training_mode(self): | |
"""The training mode for the exporter.""" | |
return self._training_mode | |
def training_mode(self, training_mode: _C_onnx.TrainingMode): | |
if not isinstance(training_mode, _C_onnx.TrainingMode): | |
raise TypeError( | |
"training_mode must be of type 'torch.onnx.TrainingMode'. This is " | |
"likely a bug in torch.onnx." | |
) | |
self._training_mode = training_mode | |
def export_onnx_opset_version(self) -> int: | |
"""Opset version used during export.""" | |
return self._export_onnx_opset_version | |
def export_onnx_opset_version(self, value: int): | |
supported_versions = range( | |
_constants.ONNX_MIN_OPSET, _constants.ONNX_MAX_OPSET + 1 | |
) | |
if value not in supported_versions: | |
raise ValueError(f"Unsupported ONNX opset version: {value}") | |
self._export_onnx_opset_version = value | |
def in_onnx_export(self) -> bool: | |
"""Whether it is in the middle of ONNX export.""" | |
return self._in_onnx_export | |
def in_onnx_export(self, value: bool): | |
if type(value) is not bool: | |
raise TypeError("in_onnx_export must be a boolean") | |
self._in_onnx_export = value | |
def autograd_inlining(self) -> bool: | |
"""Whether Autograd must be inlined.""" | |
return self._autograd_inlining | |
def autograd_inlining(self, value: bool): | |
if type(value) is not bool: | |
raise TypeError("autograd_inlining must be a boolean") | |
self._autograd_inlining = value | |
GLOBALS = _InternalGlobals() | |