Spaces:
Sleeping
Sleeping
| namespace at { | |
| class Tensor; | |
| enum class TORCH_API Float32MatmulPrecision { HIGHEST, HIGH, MEDIUM }; | |
| class TORCH_API Context { | |
| public: | |
| Context(); | |
| const Generator& defaultGenerator(Device device) { | |
| c10::DeviceType device_type = device.type(); | |
| initCUDAIfNeeded(device_type); | |
| initHIPIfNeeded(device_type); | |
| if (device_type == at::kCPU) { | |
| return at::detail::getDefaultCPUGenerator(); | |
| } else if (device_type == at::kCUDA) { | |
| return at::detail::getCUDAHooks().getDefaultCUDAGenerator(device.index()); | |
| } else if (device_type == at::kMPS) { | |
| return at::detail::getMPSHooks().getDefaultMPSGenerator(); | |
| } else if (device_type == at::kXPU) { | |
| return at::detail::getXPUHooks().getDefaultXPUGenerator(device.index()); | |
| } else if (device_type == at::kIPU) { | |
| return at::detail::getIPUHooks().getDefaultIPUGenerator(device.index()); | |
| } else if (device_type == at::kPrivateUse1) { | |
| return at::GetPrivateUse1HooksInterface()->getDefaultGenerator( | |
| device.index()); | |
| } else { | |
| AT_ERROR(c10::DeviceTypeName(device_type), " device type not enabled."); | |
| } | |
| } | |
| const AcceleratorHooksInterface& getAcceleratorHooksInterface( | |
| c10::optional<c10::DeviceType> opt_device_type = c10::nullopt) { | |
| c10::DeviceType device_type = opt_device_type.has_value() | |
| ? opt_device_type.value() | |
| : at::getAccelerator(true).value(); | |
| if (device_type == at::kCUDA) { | |
| return at::detail::getCUDAHooks(); | |
| } else if (device_type == at::kMPS) { | |
| return at::detail::getMPSHooks(); | |
| } else if (device_type == at::kPrivateUse1) { | |
| return at::detail::getPrivateUse1Hooks(); | |
| } else { | |
| AT_ERROR( | |
| c10::DeviceTypeName(device_type), " device type not an accelerator."); | |
| } | |
| } | |
| Device getDeviceFromPtr(void* data, c10::DeviceType device_type) { | |
| initCUDAIfNeeded(device_type); | |
| initHIPIfNeeded(device_type); | |
| initXPUIfNeeded(device_type); | |
| if (device_type == at::kCPU) { | |
| return c10::DeviceType::CPU; | |
| } else if (device_type == at::kCUDA) { | |
| return at::detail::getCUDAHooks().getDeviceFromPtr(data); | |
| } else if (device_type == at::kXPU) { | |
| return at::detail::getXPUHooks().getDeviceFromPtr(data); | |
| } else if (device_type == at::kPrivateUse1) { | |
| return at::GetPrivateUse1HooksInterface()->getDeviceFromPtr(data); | |
| } else { | |
| AT_ERROR(c10::DeviceTypeName(device_type), " device type not enabled."); | |
| } | |
| } | |
| static bool isPinnedPtr(const void* data) { | |
| return detail::getCUDAHooks().isPinnedPtr(data); | |
| } | |
| static bool hasOpenMP(); | |
| static bool hasMKL(); | |
| static bool hasLAPACK(); | |
| static bool hasMKLDNN(); | |
| static bool hasMAGMA() { | |
| return detail::getCUDAHooks().hasMAGMA(); | |
| } | |
| static bool hasCUDA() { | |
| return detail::getCUDAHooks().hasCUDA(); | |
| } | |
| static bool hasMTIA() { | |
| return detail::getMTIAHooks().hasMTIA(); | |
| } | |
| static bool hasCUDART() { | |
| return detail::getCUDAHooks().hasCUDART(); | |
| } | |
| static long versionCUDART() { | |
| return detail::getCUDAHooks().versionCUDART(); | |
| } | |
| static bool hasCuDNN() { | |
| return detail::getCUDAHooks().hasCuDNN(); | |
| } | |
| static long versionCuDNN() { | |
| return detail::getCUDAHooks().versionCuDNN(); | |
| } | |
| static bool hasCuSOLVER() { | |
| return detail::getCUDAHooks().hasCuSOLVER(); | |
| } | |
| static bool hasHIP() { | |
| return detail::getHIPHooks().hasHIP(); | |
| } | |
| static bool hasMPS() { | |
| return detail::getMPSHooks().hasMPS(); | |
| } | |
| static bool hasIPU() { | |
| return c10::impl::hasDeviceGuardImpl(c10::DeviceType::IPU); | |
| } | |
| static bool hasXLA() { | |
| return c10::impl::hasDeviceGuardImpl(c10::DeviceType::XLA); | |
| } | |
| static bool hasXPU() { | |
| return detail::getXPUHooks().hasXPU(); | |
| } | |
| static bool hasLazy() { | |
| return c10::impl::hasDeviceGuardImpl(c10::DeviceType::Lazy); | |
| } | |
| static bool hasORT() { | |
| return c10::impl::hasDeviceGuardImpl(c10::DeviceType::ORT); | |
| } | |
| // defined in header so that getNonVariableType has ability to inline | |
| // call_once check. getNonVariableType is called fairly frequently | |
| void lazyInitCUDA() { | |
| c10::call_once(thc_init, [&] { detail::getCUDAHooks().initCUDA(); }); | |
| } | |
| void lazyInitHIP() { | |
| c10::call_once(thh_init, [&] { detail::getHIPHooks().initHIP(); }); | |
| } | |
| void lazyInitXPU() { | |
| c10::call_once(thx_init, [&] { detail::getXPUHooks().initXPU(); }); | |
| } | |
| void lazyInitPrivateUse1() { | |
| c10::call_once(thp_init, [&] { | |
| if (isPrivateUse1HooksRegistered()) { | |
| at::GetPrivateUse1HooksInterface()->initPrivateUse1(); | |
| } | |
| }); | |
| } | |
| static const at::cuda::NVRTC& getNVRTC() { | |
| return detail::getCUDAHooks().nvrtc(); | |
| } | |
| static bool setFlushDenormal(bool on); | |
| // NB: This method is *purely* whether or not a user requested | |
| // that CuDNN was enabled, it doesn't actually say anything about | |
| // whether or not CuDNN is actually usable. Use cudnn_is_acceptable | |
| // to test this instead | |
| bool userEnabledCuDNN() const; | |
| void setUserEnabledCuDNN(bool e); | |
| bool userEnabledMkldnn() const; | |
| void setUserEnabledMkldnn(bool e); | |
| bool benchmarkCuDNN() const; | |
| void setBenchmarkCuDNN(bool); | |
| int benchmarkLimitCuDNN() const; | |
| void setBenchmarkLimitCuDNN(int); | |
| bool deterministicCuDNN() const; | |
| void setDeterministicCuDNN(bool); | |
| bool userEnabledNNPACK() const; | |
| void setUserEnabledNNPACK(bool e); | |
| // Note [Disabling Fused SDP Kernels] | |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
| // Flash and Memory Efficient SDP kernels are enabled by default. | |
| // However, they can be disabled by setting | |
| // at::globalContext().setUserEnabledFlashSDP(false) flag. | |
| // This is useful for debugging purposes. For example, if you want to | |
| // compare the performance of the flash SDP kernels with the unfused | |
| // kernel, you can disable the flash SDP kernels. By disabling | |
| // the math SDP kernel, you can force your code to use flash kernels. | |
| // The math SDP kernel can be disabled by setting | |
| // at::globalContext().setUserEnabledMathSDP(false) flag. | |
| void setSDPUseFlash(bool); | |
| bool userEnabledFlashSDP() const; | |
| void setSDPUseMemEfficient(bool); | |
| bool userEnabledMemEfficientSDP() const; | |
| void setSDPUseMath(bool); | |
| bool userEnabledMathSDP() const; | |
| void setSDPUseCuDNN(bool); | |
| bool userEnabledCuDNNSDP() const; | |
| at::LinalgBackend linalgPreferredBackend() const; | |
| void setLinalgPreferredBackend(at::LinalgBackend); | |
| // Note [Enabling Deterministic Operations] | |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
| // Operations in PyTorch that normally act nondeterministically, but have an | |
| // alternate deterministic implementation, should satisfy the following | |
| // requirements: | |
| // | |
| // * Include this comment: "See Note [Enabling Deterministic Operations]" | |
| // | |
| // * Check the value of `at::globalContext().deterministicAlgorithms()` to | |
| // toggle | |
| // between nondeterministic and deterministic implementations. | |
| // | |
| // * Have an entry in the list of PyTorch operations that toggle between | |
| // nondeterministic | |
| // and deterministic implementations, in the docstring of | |
| // `use_deterministic_algorithms()` in torch/__init__.py | |
| // | |
| // `example_func()` below shows an example of toggling between | |
| // nondeterministic and deterministic implementations: | |
| // | |
| // void example_func() { | |
| // // See Note [Enabling Deterministic Operations] | |
| // if (at::globalContext().deterministicAlgorithms()) { | |
| // example_func_deterministic(); | |
| // } else { | |
| // example_func_nondeterministic(); | |
| // } | |
| // } | |
| bool deterministicAlgorithms() const; | |
| bool deterministicAlgorithmsWarnOnly() const; | |
| void setDeterministicAlgorithms(bool, bool); | |
| bool deterministicFillUninitializedMemory() const; | |
| void setDeterministicFillUninitializedMemory(bool); | |
| // Note [Writing Nondeterministic Operations] | |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
| // Operations in PyTorch that act nondeterministically and do not have an | |
| // alternate deterministic implementation should satisfy the following | |
| // requirements: | |
| // | |
| // * Include this comment: "See Note [Writing Nondeterministic Operations]" | |
| // | |
| // * Include a comment explaining why the operation is nondeterministic. | |
| // | |
| // * Throw an error when `Context::deterministicAlgorithms()` is true. Most | |
| // of the time, this should be accomplished by calling | |
| // `at::globalContext().alertNotDeterminstic()`. However, if the | |
| // nondeterministic behavior is caused by the CuBLAS workspace | |
| // configuration in CUDA >= 10.2, | |
| // `at::globalContext().alertCuBLASConfigNotDeterministic()` should be | |
| // called instead (in this case, a comment explaining why the operation is | |
| // nondeterministic is not necessary). See below for details on these | |
| // methods. | |
| // | |
| // * Have an entry in the list of nondeterministic PyTorch operations in the | |
| // docstring of `use_deterministic_algorithms()` in torch/__init__.py | |
| // | |
| // * Have a test function in `test/test_torch.py` whose name begins with | |
| // `test_nondeterministic_alert_`. Alternatively, if CuBLAS workspace | |
| // configuration is the reason for nondeterminism, the operation should be | |
| // included in the `test_cublas_config_nondeterministic_alert` test. Any new | |
| // tests should ideally follow a pattern similar to the existing ones. | |
| // | |
| // `example_func()` below shows an example of the comments and error-throwing | |
| // code for a nondeterministic operation: | |
| // | |
| // void example_func() { | |
| // // See Note [Writing Nondeterministic Operations] | |
| // // Nondeterministic because <reason> | |
| // at::globalContext().alertNondeterministic("example_func"); | |
| // ... | |
| // } | |
| // Throws an error if `Context::deterministicAlgorithms()` is true | |
| static void alertNotDeterministic(c10::string_view const& caller); | |
| // Throws an error if `Context::deterministicAlgorithms()` is true, CUDA | |
| // >= 10.2, and CUBLAS_WORKSPACE_CONFIG is not set to either ":16:8" or | |
| // ":4096:8". For more details: | |
| // https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility | |
| void alertCuBLASConfigNotDeterministic() const; | |
| void setFloat32MatmulPrecision(const std::string& s); | |
| bool allowTF32CuDNN() const; | |
| void setAllowTF32CuDNN(bool); | |
| bool allowTF32CuBLAS() const; | |
| void setAllowTF32CuBLAS(bool); | |
| Float32MatmulPrecision float32MatmulPrecision() const; | |
| void setFloat32MatmulPrecision(Float32MatmulPrecision p); | |
| bool allowFP16ReductionCuBLAS() const; | |
| void setAllowFP16ReductionCuBLAS(bool); | |
| bool allowBF16ReductionCuBLAS() const; | |
| void setAllowBF16ReductionCuBLAS(bool); | |
| at::QEngine qEngine() const; | |
| void setQEngine(at::QEngine e); | |
| static const std::vector<at::QEngine>& supportedQEngines(); | |
| static bool isXNNPACKAvailable(); | |
| void setCheckSparseTensorInvariants(bool e); | |
| bool checkSparseTensorInvariants() const; | |
| // This method is used to release the original weight after pre-packing. | |
| // It should be called once before loading/running the model. | |
| // NB: By default it is set to true for mobile builds. | |
| void setReleaseWeightsWhenPrepacking(bool e); | |
| bool releaseWeightsWhenPrepacking() const; | |
| void setDisplayVmapFallbackWarnings(bool enabled); | |
| bool areVmapFallbackWarningsEnabled() const; | |
| void setDefaultMobileCPUAllocator(); | |
| void unsetDefaultMobileCPUAllocator(); | |
| bool allowFP16ReductionCPU() const; | |
| void setAllowFP16ReductionCPU(bool); | |
| private: | |
| void initCUDAIfNeeded(c10::DeviceType p) { | |
| if (p == c10::DeviceType::CUDA) { | |
| lazyInitCUDA(); | |
| } | |
| } | |
| void initHIPIfNeeded(c10::DeviceType p) { | |
| if (p == c10::DeviceType::HIP) { | |
| lazyInitHIP(); | |
| } | |
| } | |
| void initXPUIfNeeded(c10::DeviceType p) { | |
| if (p == c10::DeviceType::XPU) { | |
| lazyInitXPU(); | |
| } | |
| } | |
| static bool checkCuBLASConfigDeterministic(); | |
| c10::once_flag thc_init; | |
| c10::once_flag thh_init; | |
| c10::once_flag thx_init; | |
| c10::once_flag thp_init; | |
| bool enabled_cudnn = true; | |
| bool deterministic_cudnn = false; | |
| bool _deterministic_algorithms = false; | |
| bool _deterministic_algorithms_warn_only = false; | |
| bool _deterministic_fill_uninitialized_memory = true; | |
| bool enabled_flashSDP = true; | |
| bool enabled_mem_efficientSDP = true; | |
| bool enabled_mathSDP = true; | |
| bool enabled_cudnnSDP = false; | |
| bool benchmark_cudnn = true; | |
| bool benchmark_cudnn = false; | |
| Float32MatmulPrecision float32_matmul_precision = | |
| c10::utils::check_env("TORCH_ALLOW_TF32_CUBLAS_OVERRIDE") == true | |
| ? at::Float32MatmulPrecision::HIGH | |
| : at::Float32MatmulPrecision::HIGHEST; | |
| int benchmark_limit_cudnn = 10; | |
| bool allow_tf32_cudnn = true; | |
| bool allow_fp16_reduction_cublas = true; | |
| bool allow_bf16_reduction_cublas = true; | |
| bool enabled_mkldnn = true; | |
| bool enabled_nnpack = true; | |
| at::LinalgBackend linalg_preferred_backend = | |
| c10::utils::check_env("TORCH_LINALG_PREFER_CUSOLVER") == true | |
| ? at::LinalgBackend::Cusolver | |
| : at::LinalgBackend::Default; | |
| bool release_original_weights = true; | |
| bool release_original_weights = false; | |
| bool display_vmap_fallback_warnings_ = false; | |
| c10::optional<at::QEngine> quantized_engine = c10::nullopt; | |
| bool enable_sparse_tensor_invariant_checks = false; | |
| bool allow_fp16_reduction_cpu = false; | |
| Allocator* prev_allocator_ptr_{nullptr}; | |
| }; | |
| TORCH_API Context& globalContext(); | |
| static inline void init() { | |
| globalContext(); | |
| } | |
| TORCH_API Allocator* getCPUAllocator(); | |
| static inline DeprecatedTypeProperties& getDeprecatedTypeProperties( | |
| Backend p, | |
| ScalarType s) { | |
| return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties( | |
| p, s); | |
| } | |
| static inline DeprecatedTypeProperties& CPU(ScalarType s) { | |
| return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties( | |
| Backend::CPU, s); | |
| } | |
| static inline DeprecatedTypeProperties& CUDA(ScalarType s) { | |
| return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties( | |
| Backend::CUDA, s); | |
| } | |
| static inline DeprecatedTypeProperties& HIP(ScalarType s) { | |
| return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties( | |
| Backend::HIP, s); | |
| } | |
| static inline DeprecatedTypeProperties& MPS(ScalarType s) { | |
| return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties( | |
| Backend::MPS, s); | |
| } | |
| static inline bool hasCUDA() { | |
| return globalContext().hasCUDA(); | |
| } | |
| static inline bool hasMTIA() { | |
| return globalContext().hasMTIA(); | |
| } | |
| static inline bool hasHIP() { | |
| return globalContext().hasHIP(); | |
| } | |
| static inline bool hasIPU() { | |
| return globalContext().hasIPU(); | |
| } | |
| static inline bool hasXLA() { | |
| return globalContext().hasXLA(); | |
| } | |
| static inline bool hasMPS() { | |
| return globalContext().hasMPS(); | |
| } | |
| static inline bool hasORT() { | |
| return globalContext().hasORT(); | |
| } | |
| static inline bool hasXPU() { | |
| return globalContext().hasXPU(); | |
| } | |
| // Despite its name, this function returns the number of *CUDA* GPUs. | |
| static inline size_t getNumGPUs() { | |
| // WARNING: DO NOT ADD LOGIC TO HANDLE OTHER DEVICE TYPES TO THIS | |
| // FUNCTION. If you are interested in interrogating the number of | |
| // devices for a specific device type, add that function to the | |
| // relevant library (e.g., similar to at::cuda::device_count()) | |
| if (hasCUDA() && hasHIP()) { | |
| throw std::runtime_error( | |
| "Enabling both CUDA and HIP in ATen is not supported, as HIP masquerades " | |
| "to be CUDA (e.g., when you say CUDA, on a HIP build of ATen, this actually " | |
| "means HIP. Rebuild PyTorch with one or the other disabled."); | |
| } else if (hasCUDA()) { | |
| return detail::getCUDAHooks().getNumGPUs(); | |
| } else if (hasHIP()) { | |
| return detail::getHIPHooks().getNumGPUs(); | |
| } else { | |
| return 0; | |
| } | |
| } | |
| static inline bool hasOpenMP() { | |
| return globalContext().hasOpenMP(); | |
| } | |
| static inline bool hasMKL() { | |
| return globalContext().hasMKL(); | |
| } | |
| static inline bool hasLAPACK() { | |
| return globalContext().hasLAPACK(); | |
| } | |
| static inline bool hasMAGMA() { | |
| return globalContext().hasMAGMA(); | |
| } | |
| static inline bool hasMKLDNN() { | |
| return globalContext().hasMKLDNN(); | |
| } | |
| static inline void manual_seed(uint64_t seed) { | |
| auto gen = globalContext().defaultGenerator(c10::DeviceType::CPU); | |
| { | |
| // See Note [Acquire lock when using random generators] | |
| std::lock_guard<std::mutex> lock(gen.mutex()); | |
| gen.set_current_seed(seed); | |
| } | |
| // NB: Sometimes we build with CUDA, but we don't have any GPUs | |
| // available. In that case, we must not seed CUDA; it will fail! | |
| const auto cuda_num_gpus = detail::getCUDAHooks().getNumGPUs(); | |
| if (hasCUDA() && cuda_num_gpus > 0) { | |
| for (const auto i : c10::irange(cuda_num_gpus)) { | |
| auto cuda_gen = globalContext().defaultGenerator( | |
| Device(at::kCUDA, static_cast<c10::DeviceIndex>(i))); | |
| { | |
| // See Note [Acquire lock when using random generators] | |
| std::lock_guard<std::mutex> lock(cuda_gen.mutex()); | |
| cuda_gen.set_current_seed(seed); | |
| } | |
| } | |
| } | |
| const auto xpu_num_gpus = detail::getXPUHooks().getNumGPUs(); | |
| if (hasXPU() && xpu_num_gpus) { | |
| for (const auto i : c10::irange(xpu_num_gpus)) { | |
| auto xpu_gen = globalContext().defaultGenerator( | |
| Device(at::kXPU, static_cast<c10::DeviceIndex>(i))); | |
| { | |
| // See Note [Acquire lock when using random generators] | |
| std::lock_guard<std::mutex> lock(xpu_gen.mutex()); | |
| xpu_gen.set_current_seed(seed); | |
| } | |
| } | |
| } | |
| if (hasMPS()) { | |
| auto mps_gen = globalContext().defaultGenerator(c10::DeviceType::MPS); | |
| // See Note [Acquire lock when using random generators] | |
| std::lock_guard<std::mutex> lock(mps_gen.mutex()); | |
| mps_gen.set_current_seed(seed); | |
| } | |
| } | |
| // When the global flag `allow_tf32` is set to true, cuBLAS handles are | |
| // automatically configured to use math mode CUBLAS_TF32_TENSOR_OP_MATH. | |
| // For some operators, such as addmv, TF32 offers no performance improvement | |
| // but causes precision loss. To help this case, this class implements | |
| // a RAII guard that can be used to quickly disable TF32 within its scope. | |
| // | |
| // Usage: | |
| // NoTF32Guard disable_tf32; | |
| struct TORCH_API NoTF32Guard { | |
| NoTF32Guard(); | |
| ~NoTF32Guard(); | |
| static bool should_disable_tf32(); | |
| private: | |
| bool changed = false; | |
| }; | |
| struct TORCH_API ROCmBackwardPassGuard { | |
| ROCmBackwardPassGuard(); | |
| ~ROCmBackwardPassGuard(); | |
| static bool is_backward_pass(); | |
| }; | |
| } // namespace at | |