Spaces:
Sleeping
Sleeping
from typing import ( | |
List, Tuple, Optional, Union, Any, Sequence, TYPE_CHECKING | |
) | |
import operator | |
import itertools | |
import torch | |
from torch._C import _add_docstr | |
import torch.nn.functional as F | |
from ._lowrank import svd_lowrank, pca_lowrank | |
from .overrides import ( | |
has_torch_function, has_torch_function_unary, has_torch_function_variadic, | |
handle_torch_function) | |
from ._jit_internal import boolean_dispatch | |
from ._jit_internal import _overload as overload | |
Tensor = torch.Tensor | |
from torch import _VF | |
__all__ = [ | |
'atleast_1d', | |
'atleast_2d', | |
'atleast_3d', | |
'align_tensors', | |
'broadcast_shapes', | |
'broadcast_tensors', | |
'cartesian_prod', | |
'block_diag', | |
'cdist', | |
'chain_matmul', | |
'einsum', | |
'istft', | |
'lu', | |
'norm', | |
'meshgrid', | |
'pca_lowrank', | |
'split', | |
'stft', | |
'svd_lowrank', | |
'tensordot', | |
'unique', | |
'unique_consecutive', | |
'unravel_index', | |
] | |
def broadcast_tensors(*tensors): | |
r"""broadcast_tensors(*tensors) -> List of Tensors | |
Broadcasts the given tensors according to :ref:`broadcasting-semantics`. | |
Args: | |
*tensors: any number of tensors of the same type | |
.. warning:: | |
More than one element of a broadcasted tensor may refer to a single | |
memory location. As a result, in-place operations (especially ones that | |
are vectorized) may result in incorrect behavior. If you need to write | |
to the tensors, please clone them first. | |
Example:: | |
>>> x = torch.arange(3).view(1, 3) | |
>>> y = torch.arange(2).view(2, 1) | |
>>> a, b = torch.broadcast_tensors(x, y) | |
>>> a.size() | |
torch.Size([2, 3]) | |
>>> a | |
tensor([[0, 1, 2], | |
[0, 1, 2]]) | |
""" | |
# This wrapper exists to support variadic args. | |
if has_torch_function(tensors): | |
return handle_torch_function(broadcast_tensors, tensors, *tensors) | |
return _VF.broadcast_tensors(tensors) # type: ignore[attr-defined] | |
def broadcast_shapes(*shapes): | |
r"""broadcast_shapes(*shapes) -> Size | |
Similar to :func:`broadcast_tensors` but for shapes. | |
This is equivalent to | |
``torch.broadcast_tensors(*map(torch.empty, shapes))[0].shape`` | |
but avoids the need create to intermediate tensors. This is useful for | |
broadcasting tensors of common batch shape but different rightmost shape, | |
e.g. to broadcast mean vectors with covariance matrices. | |
Example:: | |
>>> torch.broadcast_shapes((2,), (3, 1), (1, 1, 1)) | |
torch.Size([1, 3, 2]) | |
Args: | |
\*shapes (torch.Size): Shapes of tensors. | |
Returns: | |
shape (torch.Size): A shape compatible with all input shapes. | |
Raises: | |
RuntimeError: If shapes are incompatible. | |
""" | |
# This wrapper exists to support variadic args. | |
# TODO Move this to C++ once the jit has better support for torch.Size. | |
if not torch.jit.is_tracing(): | |
max_len = 0 | |
for shape in shapes: | |
if isinstance(shape, (int, torch.SymInt)): | |
if max_len < 1: | |
max_len = 1 | |
elif isinstance(shape, (tuple, list)): | |
s = len(shape) | |
if max_len < s: | |
max_len = s | |
result = [1] * max_len | |
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious | |
for shape in shapes: | |
if isinstance(shape, (int, torch.SymInt)): | |
shape = (shape,) | |
if isinstance(shape, (tuple, list)): | |
for i in range(-1, -1 - len(shape), -1): | |
if shape[i] < 0: | |
raise RuntimeError(f"Trying to create tensor with negative dimension ({shape[i]}): ({shape[i]})") | |
# NB: result is initialized to 1 so this is effectively an | |
# equals one test | |
if guard_size_oblivious(shape[i] == 1) or guard_size_oblivious(shape[i] == result[i]): | |
continue | |
if result[i] != 1: | |
raise RuntimeError("Shape mismatch: objects cannot be broadcast to a single shape") | |
result[i] = shape[i] | |
else: | |
raise RuntimeError("Input shapes should be of type ints, a tuple of ints, or a list of ints, got ", shape) | |
return torch.Size(result) | |
else: | |
# with implementation above, torch.jit.trace hardcodes the sizes which makes subsequent replays fail | |
with torch.no_grad(): | |
scalar = torch.zeros((), device="cpu") | |
tensors = [scalar.expand(shape) for shape in shapes] | |
tensors = broadcast_tensors(*tensors) | |
return tensors[0].shape | |
def split( | |
tensor: Tensor, split_size_or_sections: Union[int, List[int]], dim: int = 0 | |
) -> Tuple[Tensor, ...]: | |
r"""Splits the tensor into chunks. Each chunk is a view of the original tensor. | |
If :attr:`split_size_or_sections` is an integer type, then :attr:`tensor` will | |
be split into equally sized chunks (if possible). Last chunk will be smaller if | |
the tensor size along the given dimension :attr:`dim` is not divisible by | |
:attr:`split_size`. | |
If :attr:`split_size_or_sections` is a list, then :attr:`tensor` will be split | |
into ``len(split_size_or_sections)`` chunks with sizes in :attr:`dim` according | |
to :attr:`split_size_or_sections`. | |
Args: | |
tensor (Tensor): tensor to split. | |
split_size_or_sections (int) or (list(int)): size of a single chunk or | |
list of sizes for each chunk | |
dim (int): dimension along which to split the tensor. | |
Example:: | |
>>> a = torch.arange(10).reshape(5, 2) | |
>>> a | |
tensor([[0, 1], | |
[2, 3], | |
[4, 5], | |
[6, 7], | |
[8, 9]]) | |
>>> torch.split(a, 2) | |
(tensor([[0, 1], | |
[2, 3]]), | |
tensor([[4, 5], | |
[6, 7]]), | |
tensor([[8, 9]])) | |
>>> torch.split(a, [1, 4]) | |
(tensor([[0, 1]]), | |
tensor([[2, 3], | |
[4, 5], | |
[6, 7], | |
[8, 9]])) | |
""" | |
if has_torch_function_unary(tensor): | |
return handle_torch_function( | |
split, (tensor,), tensor, split_size_or_sections, dim=dim) | |
# Overwriting reason: | |
# This dispatches to two ATen functions depending on the type of | |
# split_size_or_sections. The branching code is in _tensor.py, which we | |
# call here. | |
return tensor.split(split_size_or_sections, dim) | |
def einsum(*args: Any) -> Tensor: | |
r"""einsum(equation, *operands) -> Tensor | |
Sums the product of the elements of the input :attr:`operands` along dimensions specified using a notation | |
based on the Einstein summation convention. | |
Einsum allows computing many common multi-dimensional linear algebraic array operations by representing them | |
in a short-hand format based on the Einstein summation convention, given by :attr:`equation`. The details of | |
this format are described below, but the general idea is to label every dimension of the input :attr:`operands` | |
with some subscript and define which subscripts are part of the output. The output is then computed by summing | |
the product of the elements of the :attr:`operands` along the dimensions whose subscripts are not part of the | |
output. For example, matrix multiplication can be computed using einsum as `torch.einsum("ij,jk->ik", A, B)`. | |
Here, j is the summation subscript and i and k the output subscripts (see section below for more details on why). | |
Equation: | |
The :attr:`equation` string specifies the subscripts (letters in `[a-zA-Z]`) for each dimension of | |
the input :attr:`operands` in the same order as the dimensions, separating subscripts for each operand by a | |
comma (','), e.g. `'ij,jk'` specify subscripts for two 2D operands. The dimensions labeled with the same subscript | |
must be broadcastable, that is, their size must either match or be `1`. The exception is if a subscript is | |
repeated for the same input operand, in which case the dimensions labeled with this subscript for this operand | |
must match in size and the operand will be replaced by its diagonal along these dimensions. The subscripts that | |
appear exactly once in the :attr:`equation` will be part of the output, sorted in increasing alphabetical order. | |
The output is computed by multiplying the input :attr:`operands` element-wise, with their dimensions aligned based | |
on the subscripts, and then summing out the dimensions whose subscripts are not part of the output. | |
Optionally, the output subscripts can be explicitly defined by adding an arrow ('->') at the end of the equation | |
followed by the subscripts for the output. For instance, the following equation computes the transpose of a | |
matrix multiplication: 'ij,jk->ki'. The output subscripts must appear at least once for some input operand and | |
at most once for the output. | |
Ellipsis ('...') can be used in place of subscripts to broadcast the dimensions covered by the ellipsis. | |
Each input operand may contain at most one ellipsis which will cover the dimensions not covered by subscripts, | |
e.g. for an input operand with 5 dimensions, the ellipsis in the equation `'ab...c'` cover the third and fourth | |
dimensions. The ellipsis does not need to cover the same number of dimensions across the :attr:`operands` but the | |
'shape' of the ellipsis (the size of the dimensions covered by them) must broadcast together. If the output is not | |
explicitly defined with the arrow ('->') notation, the ellipsis will come first in the output (left-most dimensions), | |
before the subscript labels that appear exactly once for the input operands. e.g. the following equation implements | |
batch matrix multiplication `'...ij,...jk'`. | |
A few final notes: the equation may contain whitespaces between the different elements (subscripts, ellipsis, | |
arrow and comma) but something like `'. . .'` is not valid. An empty string `''` is valid for scalar operands. | |
.. note:: | |
``torch.einsum`` handles ellipsis ('...') differently from NumPy in that it allows dimensions | |
covered by the ellipsis to be summed over, that is, ellipsis are not required to be part of the output. | |
.. note:: | |
This function uses opt_einsum (https://optimized-einsum.readthedocs.io/en/stable/) to speed up computation or to | |
consume less memory by optimizing contraction order. This optimization occurs when there are at least three | |
inputs, since the order does not matter otherwise. Note that finding _the_ optimal path is an NP-hard problem, | |
thus, opt_einsum relies on different heuristics to achieve near-optimal results. If opt_einsum is not available, | |
the default order is to contract from left to right. | |
To bypass this default behavior, add the following line to disable the usage of opt_einsum and skip path | |
calculation: `torch.backends.opt_einsum.enabled = False` | |
To specify which strategy you'd like for opt_einsum to compute the contraction path, add the following line: | |
`torch.backends.opt_einsum.strategy = 'auto'`. The default strategy is 'auto', and we also support 'greedy' and | |
'optimal'. Disclaimer that the runtime of 'optimal' is factorial in the number of inputs! See more details in | |
the opt_einsum documentation (https://optimized-einsum.readthedocs.io/en/stable/path_finding.html). | |
.. note:: | |
As of PyTorch 1.10 :func:`torch.einsum` also supports the sublist format (see examples below). In this format, | |
subscripts for each operand are specified by sublists, list of integers in the range [0, 52). These sublists | |
follow their operands, and an extra sublist can appear at the end of the input to specify the output's | |
subscripts., e.g. `torch.einsum(op1, sublist1, op2, sublist2, ..., [subslist_out])`. Python's `Ellipsis` object | |
may be provided in a sublist to enable broadcasting as described in the Equation section above. | |
Args: | |
equation (str): The subscripts for the Einstein summation. | |
operands (List[Tensor]): The tensors to compute the Einstein summation of. | |
Examples:: | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> # trace | |
>>> torch.einsum('ii', torch.randn(4, 4)) | |
tensor(-1.2104) | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> # diagonal | |
>>> torch.einsum('ii->i', torch.randn(4, 4)) | |
tensor([-0.1034, 0.7952, -0.2433, 0.4545]) | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> # outer product | |
>>> x = torch.randn(5) | |
>>> y = torch.randn(4) | |
>>> torch.einsum('i,j->ij', x, y) | |
tensor([[ 0.1156, -0.2897, -0.3918, 0.4963], | |
[-0.3744, 0.9381, 1.2685, -1.6070], | |
[ 0.7208, -1.8058, -2.4419, 3.0936], | |
[ 0.1713, -0.4291, -0.5802, 0.7350], | |
[ 0.5704, -1.4290, -1.9323, 2.4480]]) | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> # batch matrix multiplication | |
>>> As = torch.randn(3, 2, 5) | |
>>> Bs = torch.randn(3, 5, 4) | |
>>> torch.einsum('bij,bjk->bik', As, Bs) | |
tensor([[[-1.0564, -1.5904, 3.2023, 3.1271], | |
[-1.6706, -0.8097, -0.8025, -2.1183]], | |
[[ 4.2239, 0.3107, -0.5756, -0.2354], | |
[-1.4558, -0.3460, 1.5087, -0.8530]], | |
[[ 2.8153, 1.8787, -4.3839, -1.2112], | |
[ 0.3728, -2.1131, 0.0921, 0.8305]]]) | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> # with sublist format and ellipsis | |
>>> torch.einsum(As, [..., 0, 1], Bs, [..., 1, 2], [..., 0, 2]) | |
tensor([[[-1.0564, -1.5904, 3.2023, 3.1271], | |
[-1.6706, -0.8097, -0.8025, -2.1183]], | |
[[ 4.2239, 0.3107, -0.5756, -0.2354], | |
[-1.4558, -0.3460, 1.5087, -0.8530]], | |
[[ 2.8153, 1.8787, -4.3839, -1.2112], | |
[ 0.3728, -2.1131, 0.0921, 0.8305]]]) | |
>>> # batch permute | |
>>> A = torch.randn(2, 3, 4, 5) | |
>>> torch.einsum('...ij->...ji', A).shape | |
torch.Size([2, 3, 5, 4]) | |
>>> # equivalent to torch.nn.functional.bilinear | |
>>> A = torch.randn(3, 5, 4) | |
>>> l = torch.randn(2, 5) | |
>>> r = torch.randn(2, 4) | |
>>> torch.einsum('bn,anm,bm->ba', l, A, r) | |
tensor([[-0.3430, -5.2405, 0.4494], | |
[ 0.3311, 5.5201, -3.0356]]) | |
""" | |
import torch.backends.opt_einsum as opt_einsum | |
# This wrapper exists to support variadic args. | |
if len(args) < 2: | |
raise ValueError('einsum(): must specify the equation string and at least one operand, ' | |
'or at least one operand and its subscripts list') | |
equation = None | |
operands = None | |
if isinstance(args[0], torch.Tensor): | |
# Convert the subscript list format which is an interleaving of operand and its subscripts | |
# list with an optional output subscripts list at the end (see documentation for more details on this) | |
# to the equation string format by creating the equation string from the subscripts list and grouping the | |
# input operands into a tensorlist (List[Tensor]). | |
def parse_subscript(n: int) -> str: | |
if n == Ellipsis: | |
return '...' | |
if n >= 0 and n < 26: | |
return chr(ord('A') + n) | |
if n >= 26 and n < 52: | |
return chr(ord('a') + n - 26) | |
raise ValueError('einsum(): subscript in subscript list is not within the valid range [0, 52)') | |
# Parse subscripts for input operands | |
equation = ','.join(''.join(parse_subscript(s) for s in l) for l in args[1::2]) | |
# Parse optional output subscripts (provided when the number of arguments is odd) | |
if len(args) % 2 == 1: | |
equation += '->' + ''.join(parse_subscript(s) for s in args[-1]) | |
operands = args[:-1:2] | |
else: | |
operands = args[::2] | |
else: | |
equation = args[0] | |
operands = args[1:] | |
if has_torch_function(operands): | |
return handle_torch_function(einsum, operands, equation, *operands) | |
if len(operands) == 1 and isinstance(operands[0], (list, tuple)): | |
# the old interface of passing the operands as one list argument | |
_operands = operands[0] | |
# recurse incase operands contains value that has torch function | |
# in the original implementation this line is omitted | |
return einsum(equation, *_operands) | |
if len(operands) <= 2 or not opt_einsum.enabled: | |
# the path for contracting 0 or 1 time(s) is already optimized | |
# or the user has disabled using opt_einsum | |
return _VF.einsum(equation, operands) # type: ignore[attr-defined] | |
path = None | |
if opt_einsum.is_available(): | |
_opt_einsum = opt_einsum.get_opt_einsum() | |
tupled_path = _opt_einsum.contract_path(equation, *operands, optimize=opt_einsum.strategy)[0] | |
# flatten path for dispatching to C++ | |
path = [item for pair in tupled_path for item in pair] | |
return _VF.einsum(equation, operands, path=path) # type: ignore[attr-defined] | |
# This wrapper exists to support variadic args. | |
if TYPE_CHECKING: | |
# The JIT doesn't understand Union, so only add type annotation for mypy | |
def meshgrid(*tensors: Union[Tensor, List[Tensor]], | |
indexing: Optional[str] = None) -> Tuple[Tensor, ...]: | |
return _meshgrid(*tensors, indexing=indexing) | |
else: | |
def meshgrid(*tensors, indexing: Optional[str] = None) -> Tuple[Tensor, ...]: | |
r"""Creates grids of coordinates specified by the 1D inputs in `attr`:tensors. | |
This is helpful when you want to visualize data over some | |
range of inputs. See below for a plotting example. | |
Given :math:`N` 1D tensors :math:`T_0 \ldots T_{N-1}` as | |
inputs with corresponding sizes :math:`S_0 \ldots S_{N-1}`, | |
this creates :math:`N` N-dimensional tensors :math:`G_0 \ldots | |
G_{N-1}`, each with shape :math:`(S_0, ..., S_{N-1})` where | |
the output :math:`G_i` is constructed by expanding :math:`T_i` | |
to the result shape. | |
.. note:: | |
0D inputs are treated equivalently to 1D inputs of a | |
single element. | |
.. warning:: | |
`torch.meshgrid(*tensors)` currently has the same behavior | |
as calling `numpy.meshgrid(*arrays, indexing='ij')`. | |
In the future `torch.meshgrid` will transition to | |
`indexing='xy'` as the default. | |
https://github.com/pytorch/pytorch/issues/50276 tracks | |
this issue with the goal of migrating to NumPy's behavior. | |
.. seealso:: | |
:func:`torch.cartesian_prod` has the same effect but it | |
collects the data in a tensor of vectors. | |
Args: | |
tensors (list of Tensor): list of scalars or 1 dimensional tensors. Scalars will be | |
treated as tensors of size :math:`(1,)` automatically | |
indexing: (str, optional): the indexing mode, either "xy" | |
or "ij", defaults to "ij". See warning for future changes. | |
If "xy" is selected, the first dimension corresponds | |
to the cardinality of the second input and the second | |
dimension corresponds to the cardinality of the first | |
input. | |
If "ij" is selected, the dimensions are in the same | |
order as the cardinality of the inputs. | |
Returns: | |
seq (sequence of Tensors): If the input has :math:`N` | |
tensors of size :math:`S_0 \ldots S_{N-1}``, then the | |
output will also have :math:`N` tensors, where each tensor | |
is of shape :math:`(S_0, ..., S_{N-1})`. | |
Example:: | |
>>> x = torch.tensor([1, 2, 3]) | |
>>> y = torch.tensor([4, 5, 6]) | |
Observe the element-wise pairings across the grid, (1, 4), | |
(1, 5), ..., (3, 6). This is the same thing as the | |
cartesian product. | |
>>> grid_x, grid_y = torch.meshgrid(x, y, indexing='ij') | |
>>> grid_x | |
tensor([[1, 1, 1], | |
[2, 2, 2], | |
[3, 3, 3]]) | |
>>> grid_y | |
tensor([[4, 5, 6], | |
[4, 5, 6], | |
[4, 5, 6]]) | |
This correspondence can be seen when these grids are | |
stacked properly. | |
>>> torch.equal(torch.cat(tuple(torch.dstack([grid_x, grid_y]))), | |
... torch.cartesian_prod(x, y)) | |
True | |
`torch.meshgrid` is commonly used to produce a grid for | |
plotting. | |
>>> # xdoctest: +REQUIRES(module:matplotlib) | |
>>> # xdoctest: +REQUIRES(env:DOCTEST_SHOW) | |
>>> import matplotlib.pyplot as plt | |
>>> xs = torch.linspace(-5, 5, steps=100) | |
>>> ys = torch.linspace(-5, 5, steps=100) | |
>>> x, y = torch.meshgrid(xs, ys, indexing='xy') | |
>>> z = torch.sin(torch.sqrt(x * x + y * y)) | |
>>> ax = plt.axes(projection='3d') | |
>>> ax.plot_surface(x.numpy(), y.numpy(), z.numpy()) | |
>>> plt.show() | |
.. image:: ../_static/img/meshgrid.png | |
:width: 512 | |
""" | |
return _meshgrid(*tensors, indexing=indexing) | |
def _meshgrid(*tensors, indexing: Optional[str]): | |
if has_torch_function(tensors): | |
return handle_torch_function(meshgrid, tensors, *tensors, indexing=indexing) | |
if len(tensors) == 1 and isinstance(tensors[0], (list, tuple)): | |
# the old interface of passing the operands as one list argument | |
tensors = tensors[0] # type: ignore[assignment] | |
# Continue allowing call of old method that takes no indexing | |
# kwarg for forward compatibility reasons. | |
# | |
# Remove this two weeks after landing. | |
kwargs = {} if indexing is None else {'indexing': indexing} | |
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] | |
def stft(input: Tensor, n_fft: int, hop_length: Optional[int] = None, | |
win_length: Optional[int] = None, window: Optional[Tensor] = None, | |
center: bool = True, pad_mode: str = 'reflect', normalized: bool = False, | |
onesided: Optional[bool] = None, | |
return_complex: Optional[bool] = None) -> Tensor: | |
r"""Short-time Fourier transform (STFT). | |
.. warning:: | |
From version 1.8.0, :attr:`return_complex` must always be given | |
explicitly for real inputs and `return_complex=False` has been | |
deprecated. Strongly prefer `return_complex=True` as in a future | |
pytorch release, this function will only return complex tensors. | |
Note that :func:`torch.view_as_real` can be used to recover a real | |
tensor with an extra last dimension for real and imaginary components. | |
.. warning:: | |
From version 2.1, a warning will be provided if a :attr:`window` is | |
not specified. In a future release, this attribute will be required. | |
Not providing a window currently defaults to using a rectangular window, | |
which may result in undesirable artifacts. Consider using tapered windows, | |
such as :func:`torch.hann_window`. | |
The STFT computes the Fourier transform of short overlapping windows of the | |
input. This giving frequency components of the signal as they change over | |
time. The interface of this function is modeled after (but *not* a drop-in | |
replacement for) librosa_ stft function. | |
.. _librosa: https://librosa.org/doc/latest/generated/librosa.stft.html | |
Ignoring the optional batch dimension, this method computes the following | |
expression: | |
.. math:: | |
X[\omega, m] = \sum_{k = 0}^{\text{win\_length-1}}% | |
\text{window}[k]\ \text{input}[m \times \text{hop\_length} + k]\ % | |
\exp\left(- j \frac{2 \pi \cdot \omega k}{\text{n\_fft}}\right), | |
where :math:`m` is the index of the sliding window, and :math:`\omega` is | |
the frequency :math:`0 \leq \omega < \text{n\_fft}` for ``onesided=False``, | |
or :math:`0 \leq \omega < \lfloor \text{n\_fft} / 2 \rfloor + 1` for ``onesided=True``. | |
* :attr:`input` must be either a 1-D time sequence or a 2-D batch of time | |
sequences. | |
* If :attr:`hop_length` is ``None`` (default), it is treated as equal to | |
``floor(n_fft / 4)``. | |
* If :attr:`win_length` is ``None`` (default), it is treated as equal to | |
:attr:`n_fft`. | |
* :attr:`window` can be a 1-D tensor of size :attr:`win_length`, e.g., from | |
:meth:`torch.hann_window`. If :attr:`window` is ``None`` (default), it is | |
treated as if having :math:`1` everywhere in the window. If | |
:math:`\text{win\_length} < \text{n\_fft}`, :attr:`window` will be padded on | |
both sides to length :attr:`n_fft` before being applied. | |
* If :attr:`center` is ``True`` (default), :attr:`input` will be padded on | |
both sides so that the :math:`t`-th frame is centered at time | |
:math:`t \times \text{hop\_length}`. Otherwise, the :math:`t`-th frame | |
begins at time :math:`t \times \text{hop\_length}`. | |
* :attr:`pad_mode` determines the padding method used on :attr:`input` when | |
:attr:`center` is ``True``. See :meth:`torch.nn.functional.pad` for | |
all available options. Default is ``"reflect"``. | |
* If :attr:`onesided` is ``True`` (default for real input), only values for | |
:math:`\omega` in :math:`\left[0, 1, 2, \dots, \left\lfloor | |
\frac{\text{n\_fft}}{2} \right\rfloor + 1\right]` are returned because | |
the real-to-complex Fourier transform satisfies the conjugate symmetry, | |
i.e., :math:`X[m, \omega] = X[m, \text{n\_fft} - \omega]^*`. | |
Note if the input or window tensors are complex, then :attr:`onesided` | |
output is not possible. | |
* If :attr:`normalized` is ``True`` (default is ``False``), the function | |
returns the normalized STFT results, i.e., multiplied by :math:`(\text{frame\_length})^{-0.5}`. | |
* If :attr:`return_complex` is ``True`` (default if input is complex), the | |
return is a ``input.dim() + 1`` dimensional complex tensor. If ``False``, | |
the output is a ``input.dim() + 2`` dimensional real tensor where the last | |
dimension represents the real and imaginary components. | |
Returns either a complex tensor of size :math:`(* \times N \times T)` if | |
:attr:`return_complex` is true, or a real tensor of size :math:`(* \times N | |
\times T \times 2)`. Where :math:`*` is the optional batch size of | |
:attr:`input`, :math:`N` is the number of frequencies where STFT is applied | |
and :math:`T` is the total number of frames used. | |
.. warning:: | |
This function changed signature at version 0.4.1. Calling with the | |
previous signature may cause error or return incorrect result. | |
Args: | |
input (Tensor): the input tensor of shape `(B?, L)` where `B?` is an optional | |
batch dimension | |
n_fft (int): size of Fourier transform | |
hop_length (int, optional): the distance between neighboring sliding window | |
frames. Default: ``None`` (treated as equal to ``floor(n_fft / 4)``) | |
win_length (int, optional): the size of window frame and STFT filter. | |
Default: ``None`` (treated as equal to :attr:`n_fft`) | |
window (Tensor, optional): the optional window function. | |
Shape must be 1d and `<= n_fft` | |
Default: ``None`` (treated as window of all :math:`1` s) | |
center (bool, optional): whether to pad :attr:`input` on both sides so | |
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`. | |
Default: ``True`` | |
pad_mode (str, optional): controls the padding method used when | |
:attr:`center` is ``True``. Default: ``"reflect"`` | |
normalized (bool, optional): controls whether to return the normalized STFT results | |
Default: ``False`` | |
onesided (bool, optional): controls whether to return half of results to | |
avoid redundancy for real inputs. | |
Default: ``True`` for real :attr:`input` and :attr:`window`, ``False`` otherwise. | |
return_complex (bool, optional): whether to return a complex tensor, or | |
a real tensor with an extra last dimension for the real and | |
imaginary components. | |
.. versionchanged:: 2.0 | |
``return_complex`` is now a required argument for real inputs, | |
as the default is being transitioned to ``True``. | |
.. deprecated:: 2.0 | |
``return_complex=False`` is deprecated, instead use ``return_complex=True`` | |
Note that calling :func:`torch.view_as_real` on the output will | |
recover the deprecated output format. | |
Returns: | |
Tensor: A tensor containing the STFT result with shape `(B?, N, T, C?)` where | |
- `B?` is an optional batch dimension from the input. | |
- `N` is the number of frequency samples, `(n_fft // 2) + 1` for | |
`onesided=True`, or otherwise `n_fft`. | |
- `T` is the number of frames, `1 + L // hop_length` | |
for `center=True`, or `1 + (L - n_fft) // hop_length` otherwise. | |
- `C?` is an optional length-2 dimension of real and imaginary | |
components, present when `return_complex=False`. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
stft, (input,), input, n_fft, hop_length=hop_length, win_length=win_length, | |
window=window, center=center, pad_mode=pad_mode, normalized=normalized, | |
onesided=onesided, return_complex=return_complex) | |
# NOTE: Do not edit. This code will be removed once the forward-compatibility | |
# period is over for PR #73432 | |
if center: | |
signal_dim = input.dim() | |
extended_shape = [1] * (3 - signal_dim) + list(input.size()) | |
pad = int(n_fft // 2) | |
input = F.pad(input.view(extended_shape), [pad, pad], pad_mode) | |
input = input.view(input.shape[-signal_dim:]) | |
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined] | |
normalized, onesided, return_complex) | |
istft = _add_docstr( | |
torch.istft, | |
"istft(input, n_fft, hop_length=None, win_length=None, window=None, center=True, " | |
"normalized=False, onesided=None, length=None, return_complex=False) -> Tensor:\n" | |
r""" | |
Inverse short time Fourier Transform. This is expected to be the inverse of :func:`~torch.stft`. | |
.. warning:: | |
From version 2.1, a warning will be provided if a :attr:`window` is | |
not specified. In a future release, this attribute will be required. | |
Please provide the same window used in the stft call. | |
It has the same parameters (+ additional optional parameter of :attr:`length`) and it should return the | |
least squares estimation of the original signal. The algorithm will check using the NOLA condition ( | |
nonzero overlap). | |
Important consideration in the parameters :attr:`window` and :attr:`center` so that the envelope | |
created by the summation of all the windows is never zero at certain point in time. Specifically, | |
:math:`\sum_{t=-\infty}^{\infty} |w|^2[n-t\times hop\_length] \cancel{=} 0`. | |
Since :func:`~torch.stft` discards elements at the end of the signal if they do not fit in a frame, | |
``istft`` may return a shorter signal than the original signal (can occur if :attr:`center` is False | |
since the signal isn't padded). If `length` is given in the arguments and is longer than expected, | |
``istft`` will pad zeros to the end of the returned signal. | |
If :attr:`center` is ``True``, then there will be padding e.g. ``'constant'``, ``'reflect'``, etc. | |
Left padding can be trimmed off exactly because they can be calculated but right padding cannot be | |
calculated without additional information. | |
Example: Suppose the last window is: | |
``[17, 18, 0, 0, 0]`` vs ``[18, 0, 0, 0, 0]`` | |
The :attr:`n_fft`, :attr:`hop_length`, :attr:`win_length` are all the same which prevents the calculation | |
of right padding. These additional values could be zeros or a reflection of the signal so providing | |
:attr:`length` could be useful. If :attr:`length` is ``None`` then padding will be aggressively removed | |
(some loss of signal). | |
[1] D. W. Griffin and J. S. Lim, "Signal estimation from modified short-time Fourier transform," | |
IEEE Trans. ASSP, vol.32, no.2, pp.236-243, Apr. 1984. | |
Args: | |
input (Tensor): The input tensor. Expected to be in the format of :func:`~torch.stft`, | |
output. That is a complex tensor of shape `(B?, N, T)` where | |
- `B?` is an optional batch dimension | |
- `N` is the number of frequency samples, `(n_fft // 2) + 1` | |
for onesided input, or otherwise `n_fft`. | |
- `T` is the number of frames, `1 + length // hop_length` for centered stft, | |
or `1 + (length - n_fft) // hop_length` otherwise. | |
.. versionchanged:: 2.0 | |
Real datatype inputs are no longer supported. Input must now have a | |
complex datatype, as returned by ``stft(..., return_complex=True)``. | |
n_fft (int): Size of Fourier transform | |
hop_length (Optional[int]): The distance between neighboring sliding window frames. | |
(Default: ``n_fft // 4``) | |
win_length (Optional[int]): The size of window frame and STFT filter. (Default: ``n_fft``) | |
window (Optional[torch.Tensor]): The optional window function. | |
Shape must be 1d and `<= n_fft` | |
(Default: ``torch.ones(win_length)``) | |
center (bool): Whether :attr:`input` was padded on both sides so that the :math:`t`-th frame is | |
centered at time :math:`t \times \text{hop\_length}`. | |
(Default: ``True``) | |
normalized (bool): Whether the STFT was normalized. (Default: ``False``) | |
onesided (Optional[bool]): Whether the STFT was onesided. | |
(Default: ``True`` if `n_fft != fft_size` in the input size) | |
length (Optional[int]): The amount to trim the signal by (i.e. the | |
original signal length). Defaults to `(T - 1) * hop_length` for | |
centered stft, or `n_fft + (T - 1) * hop_length` otherwise, where `T` | |
is the number of input frames. | |
return_complex (Optional[bool]): | |
Whether the output should be complex, or if the input should be | |
assumed to derive from a real signal and window. | |
Note that this is incompatible with ``onesided=True``. | |
(Default: ``False``) | |
Returns: | |
Tensor: Least squares estimation of the original signal of shape `(B?, length)` where | |
`B?` is an optional batch dimension from the input tensor. | |
""") | |
if TYPE_CHECKING: | |
# These _impl functions return a variable number of tensors as output with | |
# __torch_function__; tuple unpacking is done already rather than being | |
# done by the caller of the _impl function | |
_unique_impl_out = Any | |
else: | |
_unique_impl_out = Tuple[Tensor, Tensor, Tensor] | |
def _unique_impl(input: Tensor, sorted: bool = True, | |
return_inverse: bool = False, return_counts: bool = False, | |
dim: Optional[int] = None) -> _unique_impl_out: | |
r"""unique(input, sorted=True, return_inverse=False, return_counts=False, dim=None) -> Tuple[Tensor, Tensor, Tensor] | |
Returns the unique elements of the input tensor. | |
.. note:: This function is different from :func:`torch.unique_consecutive` in the sense that | |
this function also eliminates non-consecutive duplicate values. | |
.. note:: Currently in the CUDA implementation and the CPU implementation, | |
`torch.unique` always sort the tensor at the beginning regardless of the `sort` argument. | |
Sorting could be slow, so if your input tensor is already sorted, it is recommended to use | |
:func:`torch.unique_consecutive` which avoids the sorting. | |
Args: | |
input (Tensor): the input tensor | |
sorted (bool): Whether to sort the unique elements in ascending order | |
before returning as output. | |
return_inverse (bool): Whether to also return the indices for where | |
elements in the original input ended up in the returned unique list. | |
return_counts (bool): Whether to also return the counts for each unique | |
element. | |
dim (int, optional): the dimension to operate upon. If ``None``, the | |
unique of the flattened input is returned. Otherwise, each of the | |
tensors indexed by the given dimension is treated as one of the | |
elements to apply the unique operation upon. See examples for more | |
details. Default: ``None`` | |
Returns: | |
(Tensor, Tensor (optional), Tensor (optional)): A tensor or a tuple of tensors containing | |
- **output** (*Tensor*): the output list of unique scalar elements. | |
- **inverse_indices** (*Tensor*): (optional) if | |
:attr:`return_inverse` is True, there will be an additional | |
returned tensor (same shape as input) representing the indices | |
for where elements in the original input map to in the output; | |
otherwise, this function will only return a single tensor. | |
- **counts** (*Tensor*): (optional) if | |
:attr:`return_counts` is True, there will be an additional | |
returned tensor (same shape as output or output.size(dim), | |
if dim was specified) representing the number of occurrences | |
for each unique value or tensor. | |
Example:: | |
>>> output = torch.unique(torch.tensor([1, 3, 2, 3], dtype=torch.long)) | |
>>> output | |
tensor([1, 2, 3]) | |
>>> output, inverse_indices = torch.unique( | |
... torch.tensor([1, 3, 2, 3], dtype=torch.long), sorted=True, return_inverse=True) | |
>>> output | |
tensor([1, 2, 3]) | |
>>> inverse_indices | |
tensor([0, 2, 1, 2]) | |
>>> output, inverse_indices = torch.unique( | |
... torch.tensor([[1, 3], [2, 3]], dtype=torch.long), sorted=True, return_inverse=True) | |
>>> output | |
tensor([1, 2, 3]) | |
>>> inverse_indices | |
tensor([[0, 2], | |
[1, 2]]) | |
>>> a = torch.tensor([ | |
... [ | |
... [1, 1, 0, 0], | |
... [1, 1, 0, 0], | |
... [0, 0, 1, 1], | |
... ], | |
... [ | |
... [0, 0, 1, 1], | |
... [0, 0, 1, 1], | |
... [1, 1, 1, 1], | |
... ], | |
... [ | |
... [1, 1, 0, 0], | |
... [1, 1, 0, 0], | |
... [0, 0, 1, 1], | |
... ], | |
... ]) | |
>>> # If we call `torch.unique(a, dim=0)`, each of the tensors `a[idx, :, :]` | |
>>> # will be compared. We can see that `a[0, :, :]` and `a[2, :, :]` match | |
>>> # each other, so one of them will be removed. | |
>>> (a[0, :, :] == a[2, :, :]).all() | |
tensor(True) | |
>>> a_unique_dim0 = torch.unique(a, dim=0) | |
>>> a_unique_dim0 | |
tensor([[[0, 0, 1, 1], | |
[0, 0, 1, 1], | |
[1, 1, 1, 1]], | |
[[1, 1, 0, 0], | |
[1, 1, 0, 0], | |
[0, 0, 1, 1]]]) | |
>>> # Notice which sub-tensors from `a` match with the sub-tensors from | |
>>> # `a_unique_dim0`: | |
>>> (a_unique_dim0[0, :, :] == a[1, :, :]).all() | |
tensor(True) | |
>>> (a_unique_dim0[1, :, :] == a[0, :, :]).all() | |
tensor(True) | |
>>> # For `torch.unique(a, dim=1)`, each of the tensors `a[:, idx, :]` are | |
>>> # compared. `a[:, 0, :]` and `a[:, 1, :]` match each other, so one of | |
>>> # them will be removed. | |
>>> (a[:, 0, :] == a[:, 1, :]).all() | |
tensor(True) | |
>>> torch.unique(a, dim=1) | |
tensor([[[0, 0, 1, 1], | |
[1, 1, 0, 0]], | |
[[1, 1, 1, 1], | |
[0, 0, 1, 1]], | |
[[0, 0, 1, 1], | |
[1, 1, 0, 0]]]) | |
>>> # For `torch.unique(a, dim=2)`, the tensors `a[:, :, idx]` are compared. | |
>>> # `a[:, :, 0]` and `a[:, :, 1]` match each other. Also, `a[:, :, 2]` and | |
>>> # `a[:, :, 3]` match each other as well. So in this case, two of the | |
>>> # sub-tensors will be removed. | |
>>> (a[:, :, 0] == a[:, :, 1]).all() | |
tensor(True) | |
>>> (a[:, :, 2] == a[:, :, 3]).all() | |
tensor(True) | |
>>> torch.unique(a, dim=2) | |
tensor([[[0, 1], | |
[0, 1], | |
[1, 0]], | |
[[1, 0], | |
[1, 0], | |
[1, 1]], | |
[[0, 1], | |
[0, 1], | |
[1, 0]]]) | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
unique, (input,), input, sorted=sorted, return_inverse=return_inverse, | |
return_counts=return_counts, dim=dim) | |
if dim is not None: | |
output, inverse_indices, counts = _VF.unique_dim( | |
input, | |
dim, | |
sorted=sorted, | |
return_inverse=return_inverse, | |
return_counts=return_counts, | |
) | |
else: | |
output, inverse_indices, counts = torch._unique2( | |
input, | |
sorted=sorted, | |
return_inverse=return_inverse, | |
return_counts=return_counts, | |
) | |
return output, inverse_indices, counts | |
def _unique_consecutive_impl(input: Tensor, return_inverse: bool = False, | |
return_counts: bool = False, | |
dim: Optional[int] = None) -> _unique_impl_out: | |
r"""Eliminates all but the first element from every consecutive group of equivalent elements. | |
.. note:: This function is different from :func:`torch.unique` in the sense that this function | |
only eliminates consecutive duplicate values. This semantics is similar to `std::unique` | |
in C++. | |
Args: | |
input (Tensor): the input tensor | |
return_inverse (bool): Whether to also return the indices for where | |
elements in the original input ended up in the returned unique list. | |
return_counts (bool): Whether to also return the counts for each unique | |
element. | |
dim (int): the dimension to apply unique. If ``None``, the unique of the | |
flattened input is returned. default: ``None`` | |
Returns: | |
(Tensor, Tensor (optional), Tensor (optional)): A tensor or a tuple of tensors containing | |
- **output** (*Tensor*): the output list of unique scalar elements. | |
- **inverse_indices** (*Tensor*): (optional) if | |
:attr:`return_inverse` is True, there will be an additional | |
returned tensor (same shape as input) representing the indices | |
for where elements in the original input map to in the output; | |
otherwise, this function will only return a single tensor. | |
- **counts** (*Tensor*): (optional) if | |
:attr:`return_counts` is True, there will be an additional | |
returned tensor (same shape as output or output.size(dim), | |
if dim was specified) representing the number of occurrences | |
for each unique value or tensor. | |
Example:: | |
>>> x = torch.tensor([1, 1, 2, 2, 3, 1, 1, 2]) | |
>>> output = torch.unique_consecutive(x) | |
>>> output | |
tensor([1, 2, 3, 1, 2]) | |
>>> output, inverse_indices = torch.unique_consecutive(x, return_inverse=True) | |
>>> output | |
tensor([1, 2, 3, 1, 2]) | |
>>> inverse_indices | |
tensor([0, 0, 1, 1, 2, 3, 3, 4]) | |
>>> output, counts = torch.unique_consecutive(x, return_counts=True) | |
>>> output | |
tensor([1, 2, 3, 1, 2]) | |
>>> counts | |
tensor([2, 2, 1, 2, 1]) | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
unique_consecutive, (input,), input, return_inverse=return_inverse, | |
return_counts=return_counts, dim=dim) | |
output, inverse_indices, counts = _VF.unique_consecutive( # type: ignore[attr-defined] | |
input, return_inverse=return_inverse, return_counts=return_counts, dim=dim) | |
return output, inverse_indices, counts | |
def _return_counts(input, sorted=True, return_inverse=False, return_counts=False, dim=None): | |
# type: (Tensor, bool, bool, bool, Optional[int]) -> Tuple[Tensor, Tensor] | |
if has_torch_function_unary(input): | |
return _unique_impl(input, sorted, return_inverse, return_counts, dim) | |
output, _, counts = _unique_impl(input, sorted, return_inverse, return_counts, dim) | |
return output, counts | |
def _return_output(input, sorted=True, return_inverse=False, return_counts=False, dim=None): | |
# type: (Tensor, bool, bool, bool, Optional[int]) -> Tensor | |
if has_torch_function_unary(input): | |
return _unique_impl(input, sorted, return_inverse, return_counts, dim) | |
output, _, _ = _unique_impl(input, sorted, return_inverse, return_counts, dim) | |
return output | |
def _return_inverse(input, sorted=True, return_inverse=False, return_counts=False, dim=None): | |
# type: (Tensor, bool, bool, bool, Optional[int]) -> Tuple[Tensor, Tensor] | |
if has_torch_function_unary(input): | |
return _unique_impl(input, sorted, return_inverse, return_counts, dim) | |
output, inverse_indices, _ = _unique_impl(input, sorted, return_inverse, return_counts, dim) | |
return output, inverse_indices | |
_return_inverse_false = boolean_dispatch( | |
arg_name='return_counts', | |
arg_index=3, | |
default=False, | |
if_true=_return_counts, | |
if_false=_return_output, | |
module_name=__name__, | |
func_name='unique') | |
_return_inverse_true = boolean_dispatch( | |
arg_name='return_counts', | |
arg_index=3, | |
default=False, | |
if_true=_unique_impl, | |
if_false=_return_inverse, | |
module_name=__name__, | |
func_name='unique') | |
# The return type of unique depends on `return_inverse`, and `return_counts` so in order to | |
# resolve the output type in TorchScript we need to statically know the value of both parameters | |
unique = boolean_dispatch( | |
arg_name='return_inverse', | |
arg_index=2, | |
default=False, | |
if_true=_return_inverse_true, | |
if_false=_return_inverse_false, | |
module_name=__name__, | |
func_name='unique') | |
unique.__doc__ = _unique_impl.__doc__ | |
def _consecutive_return_counts(input, return_inverse=False, return_counts=False, dim=None): | |
# type: (Tensor, bool, bool, Optional[int]) -> Tuple[Tensor, Tensor] | |
if has_torch_function_unary(input): | |
return _unique_consecutive_impl(input, return_inverse, return_counts, dim) | |
output, _, counts = _unique_consecutive_impl(input, return_inverse, return_counts, dim) | |
return output, counts | |
def _consecutive_return_output(input, return_inverse=False, return_counts=False, dim=None): | |
# type: (Tensor, bool, bool, Optional[int]) -> Tensor | |
if has_torch_function_unary(input): | |
return _unique_consecutive_impl(input, return_inverse, return_counts, dim) | |
output, _, _ = _unique_consecutive_impl(input, return_inverse, return_counts, dim) | |
return output | |
def _consecutive_return_inverse(input, return_inverse=False, return_counts=False, dim=None): | |
# type: (Tensor, bool, bool, Optional[int]) -> Tuple[Tensor, Tensor] | |
if has_torch_function_unary(input): | |
return _unique_consecutive_impl(input, return_inverse, return_counts, dim) | |
output, inverse_indices, _ = _unique_consecutive_impl(input, return_inverse, return_counts, dim) | |
return output, inverse_indices | |
_consecutive_return_inverse_false = boolean_dispatch( | |
arg_name='return_counts', | |
arg_index=1, | |
default=False, | |
if_true=_consecutive_return_counts, | |
if_false=_consecutive_return_output, | |
module_name=__name__, | |
func_name='unique_consecutive') | |
_consecutive_return_inverse_true = boolean_dispatch( | |
arg_name='return_counts', | |
arg_index=1, | |
default=False, | |
if_true=_unique_consecutive_impl, | |
if_false=_consecutive_return_inverse, | |
module_name=__name__, | |
func_name='unique_consecutive') | |
# The return type of unique depends on `return_inverse`, and `return_counts` so in order to | |
# resolve the output type in TorchScript we need to statically know the value of both parameters | |
unique_consecutive = boolean_dispatch( | |
arg_name='return_inverse', | |
arg_index=2, | |
default=False, | |
if_true=_consecutive_return_inverse_true, | |
if_false=_consecutive_return_inverse_false, | |
module_name=__name__, | |
func_name='unique_consecutive') | |
unique_consecutive.__doc__ = _unique_consecutive_impl.__doc__ | |
if TYPE_CHECKING: | |
pass | |
# There's no good way to use this type annotation without breaking JIT | |
# overloads. So leave untyped for mypy for now. | |
else: | |
def tensordot(a, b, dims: int = 2, out: Optional[torch.Tensor] = None): | |
pass | |
# noqa: F811 | |
def tensordot(a, b, dims: Tuple[List[int], List[int]], out: Optional[torch.Tensor] = None): # noqa: F811 | |
pass | |
# noqa: F811 | |
def tensordot(a, b, dims: List[List[int]], out: Optional[torch.Tensor] = None): # noqa: F811 | |
pass | |
# noqa: F811 | |
def tensordot(a, b, dims: torch.Tensor, out: Optional[torch.Tensor] = None): # noqa: F811 | |
pass | |
def tensordot(a, b, dims=2, out: Optional[torch.Tensor] = None): # noqa: F811 | |
r"""Returns a contraction of a and b over multiple dimensions. | |
:attr:`tensordot` implements a generalized matrix product. | |
Args: | |
a (Tensor): Left tensor to contract | |
b (Tensor): Right tensor to contract | |
dims (int or Tuple[List[int], List[int]] or List[List[int]] containing two lists or Tensor): number of dimensions to | |
contract or explicit lists of dimensions for :attr:`a` and | |
:attr:`b` respectively | |
When called with a non-negative integer argument :attr:`dims` = :math:`d`, and | |
the number of dimensions of :attr:`a` and :attr:`b` is :math:`m` and :math:`n`, | |
respectively, :func:`~torch.tensordot` computes | |
.. math:: | |
r_{i_0,...,i_{m-d}, i_d,...,i_n} | |
= \sum_{k_0,...,k_{d-1}} a_{i_0,...,i_{m-d},k_0,...,k_{d-1}} \times b_{k_0,...,k_{d-1}, i_d,...,i_n}. | |
When called with :attr:`dims` of the list form, the given dimensions will be contracted | |
in place of the last :math:`d` of :attr:`a` and the first :math:`d` of :math:`b`. The sizes | |
in these dimensions must match, but :func:`~torch.tensordot` will deal with broadcasted | |
dimensions. | |
Examples:: | |
>>> a = torch.arange(60.).reshape(3, 4, 5) | |
>>> b = torch.arange(24.).reshape(4, 3, 2) | |
>>> torch.tensordot(a, b, dims=([1, 0], [0, 1])) | |
tensor([[4400., 4730.], | |
[4532., 4874.], | |
[4664., 5018.], | |
[4796., 5162.], | |
[4928., 5306.]]) | |
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) | |
>>> a = torch.randn(3, 4, 5, device='cuda') | |
>>> b = torch.randn(4, 5, 6, device='cuda') | |
>>> c = torch.tensordot(a, b, dims=2).cpu() | |
tensor([[ 8.3504, -2.5436, 6.2922, 2.7556, -1.0732, 3.2741], | |
[ 3.3161, 0.0704, 5.0187, -0.4079, -4.3126, 4.8744], | |
[ 0.8223, 3.9445, 3.2168, -0.2400, 3.4117, 1.7780]]) | |
>>> a = torch.randn(3, 5, 4, 6) | |
>>> b = torch.randn(6, 4, 5, 3) | |
>>> torch.tensordot(a, b, dims=([2, 1, 3], [1, 2, 0])) | |
tensor([[ 7.7193, -2.4867, -10.3204], | |
[ 1.5513, -14.4737, -6.5113], | |
[ -0.2850, 4.2573, -3.5997]]) | |
""" | |
if has_torch_function_variadic(a, b): | |
return handle_torch_function(tensordot, (a, b), a, b, dims=dims, out=out) | |
if not isinstance(dims, (tuple, list, torch.Tensor, int, torch.SymInt)): | |
raise RuntimeError("tensordot expects dims to be int or " | |
+ "Tuple[List[int], List[int]] or " | |
+ "List[List[int]] containing two lists, but got " | |
+ f"dims={dims}") | |
dims_a: List[int] = [] | |
dims_b: List[int] = [] | |
if isinstance(dims, (tuple, list)): | |
dims_a, dims_b = dims | |
if isinstance(dims, torch.Tensor): | |
num_elements = dims.numel() | |
if num_elements > 1: | |
assert dims.size()[0] == 2 | |
dims_a = torch.jit.annotate(List[int], dims[0].tolist()) | |
dims_b = torch.jit.annotate(List[int], dims[1].tolist()) | |
else: | |
dims_val = int(dims.item()) | |
if dims_val < 0: | |
raise RuntimeError(f"tensordot expects dims >= 0, but got dims={dims}") | |
dims_a = list(range(-dims_val, 0)) | |
dims_b = list(range(dims_val)) | |
if isinstance(dims, (int, torch.SymInt)): | |
if dims < 0: | |
raise RuntimeError(f"tensordot expects dims >= 0, but got dims={dims}") | |
if dims > min(a.dim(), b.dim()): | |
raise RuntimeError(f"tensordot expects dims < ndim_a or ndim_b, but got dims={dims}") | |
dims_a = list(range(-dims, 0)) | |
dims_b = list(range(dims)) | |
if out is None: | |
return _VF.tensordot(a, b, dims_a, dims_b) # type: ignore[attr-defined] | |
else: | |
return _VF.tensordot(a, b, dims_a, dims_b, out=out) # type: ignore[attr-defined] | |
def cartesian_prod(*tensors: Tensor) -> Tensor: | |
"""Do cartesian product of the given sequence of tensors. The behavior is similar to | |
python's `itertools.product`. | |
Args: | |
*tensors: any number of 1 dimensional tensors. | |
Returns: | |
Tensor: A tensor equivalent to converting all the input tensors into lists, | |
do `itertools.product` on these lists, and finally convert the resulting list | |
into tensor. | |
Example:: | |
>>> import itertools | |
>>> a = [1, 2, 3] | |
>>> b = [4, 5] | |
>>> list(itertools.product(a, b)) | |
[(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)] | |
>>> tensor_a = torch.tensor(a) | |
>>> tensor_b = torch.tensor(b) | |
>>> torch.cartesian_prod(tensor_a, tensor_b) | |
tensor([[1, 4], | |
[1, 5], | |
[2, 4], | |
[2, 5], | |
[3, 4], | |
[3, 5]]) | |
""" | |
# This wrapper exists to support variadic args. | |
if has_torch_function(tensors): | |
return handle_torch_function(cartesian_prod, tensors, *tensors) | |
return _VF.cartesian_prod(tensors) # type: ignore[attr-defined] | |
def block_diag(*tensors): | |
"""Create a block diagonal matrix from provided tensors. | |
Args: | |
*tensors: One or more tensors with 0, 1, or 2 dimensions. | |
Returns: | |
Tensor: A 2 dimensional tensor with all the input tensors arranged in | |
order such that their upper left and lower right corners are | |
diagonally adjacent. All other elements are set to 0. | |
Example:: | |
>>> import torch | |
>>> A = torch.tensor([[0, 1], [1, 0]]) | |
>>> B = torch.tensor([[3, 4, 5], [6, 7, 8]]) | |
>>> C = torch.tensor(7) | |
>>> D = torch.tensor([1, 2, 3]) | |
>>> E = torch.tensor([[4], [5], [6]]) | |
>>> torch.block_diag(A, B, C, D, E) | |
tensor([[0, 1, 0, 0, 0, 0, 0, 0, 0, 0], | |
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 3, 4, 5, 0, 0, 0, 0, 0], | |
[0, 0, 6, 7, 8, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 7, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 1, 2, 3, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 4], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 5], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 6]]) | |
""" | |
# This wrapper exists to support variadic args. | |
if has_torch_function(tensors): | |
return handle_torch_function(block_diag, tensors, *tensors) | |
return torch._C._VariableFunctions.block_diag(tensors) # type: ignore[attr-defined] | |
def cdist(x1, x2, p=2., compute_mode='use_mm_for_euclid_dist_if_necessary'): | |
# type: (Tensor, Tensor, float, str) -> (Tensor) | |
r"""Computes batched the p-norm distance between each pair of the two collections of row vectors. | |
Args: | |
x1 (Tensor): input tensor of shape :math:`B \times P \times M`. | |
x2 (Tensor): input tensor of shape :math:`B \times R \times M`. | |
p: p value for the p-norm distance to calculate between each vector pair | |
:math:`\in [0, \infty]`. | |
compute_mode: | |
'use_mm_for_euclid_dist_if_necessary' - will use matrix multiplication approach to calculate | |
euclidean distance (p = 2) if P > 25 or R > 25 | |
'use_mm_for_euclid_dist' - will always use matrix multiplication approach to calculate | |
euclidean distance (p = 2) | |
'donot_use_mm_for_euclid_dist' - will never use matrix multiplication approach to calculate | |
euclidean distance (p = 2) | |
Default: use_mm_for_euclid_dist_if_necessary. | |
If x1 has shape :math:`B \times P \times M` and x2 has shape :math:`B \times R \times M` then the | |
output will have shape :math:`B \times P \times R`. | |
This function is equivalent to `scipy.spatial.distance.cdist(input,'minkowski', p=p)` | |
if :math:`p \in (0, \infty)`. When :math:`p = 0` it is equivalent to | |
`scipy.spatial.distance.cdist(input, 'hamming') * M`. When :math:`p = \infty`, the closest | |
scipy function is `scipy.spatial.distance.cdist(xn, lambda x, y: np.abs(x - y).max())`. | |
Example: | |
>>> a = torch.tensor([[0.9041, 0.0196], [-0.3108, -2.4423], [-0.4821, 1.059]]) | |
>>> a | |
tensor([[ 0.9041, 0.0196], | |
[-0.3108, -2.4423], | |
[-0.4821, 1.0590]]) | |
>>> b = torch.tensor([[-2.1763, -0.4713], [-0.6986, 1.3702]]) | |
>>> b | |
tensor([[-2.1763, -0.4713], | |
[-0.6986, 1.3702]]) | |
>>> torch.cdist(a, b, p=2) | |
tensor([[3.1193, 2.0959], | |
[2.7138, 3.8322], | |
[2.2830, 0.3791]]) | |
""" | |
if has_torch_function_variadic(x1, x2): | |
return handle_torch_function( | |
cdist, (x1, x2), x1, x2, p=p, compute_mode=compute_mode) | |
if compute_mode == 'use_mm_for_euclid_dist_if_necessary': | |
return _VF.cdist(x1, x2, p, None) # type: ignore[attr-defined] | |
elif compute_mode == 'use_mm_for_euclid_dist': | |
return _VF.cdist(x1, x2, p, 1) # type: ignore[attr-defined] | |
elif compute_mode == 'donot_use_mm_for_euclid_dist': | |
return _VF.cdist(x1, x2, p, 2) # type: ignore[attr-defined] | |
else: | |
raise ValueError(f"{compute_mode} is not a valid value for compute_mode") | |
def atleast_1d(*tensors): | |
r""" | |
Returns a 1-dimensional view of each input tensor with zero dimensions. | |
Input tensors with one or more dimensions are returned as-is. | |
Args: | |
input (Tensor or list of Tensors) | |
Returns: | |
output (Tensor or tuple of Tensors) | |
Example:: | |
>>> x = torch.arange(2) | |
>>> x | |
tensor([0, 1]) | |
>>> torch.atleast_1d(x) | |
tensor([0, 1]) | |
>>> x = torch.tensor(1.) | |
>>> x | |
tensor(1.) | |
>>> torch.atleast_1d(x) | |
tensor([1.]) | |
>>> x = torch.tensor(0.5) | |
>>> y = torch.tensor(1.) | |
>>> torch.atleast_1d((x, y)) | |
(tensor([0.5000]), tensor([1.])) | |
""" | |
# This wrapper exists to support variadic args. | |
if has_torch_function(tensors): | |
return handle_torch_function(atleast_1d, tensors, *tensors) | |
if len(tensors) == 1: | |
tensors = tensors[0] | |
return _VF.atleast_1d(tensors) # type: ignore[attr-defined] | |
def atleast_2d(*tensors): | |
r""" | |
Returns a 2-dimensional view of each input tensor with zero dimensions. | |
Input tensors with two or more dimensions are returned as-is. | |
Args: | |
input (Tensor or list of Tensors) | |
Returns: | |
output (Tensor or tuple of Tensors) | |
Example:: | |
>>> x = torch.tensor(1.) | |
>>> x | |
tensor(1.) | |
>>> torch.atleast_2d(x) | |
tensor([[1.]]) | |
>>> x = torch.arange(4).view(2, 2) | |
>>> x | |
tensor([[0, 1], | |
[2, 3]]) | |
>>> torch.atleast_2d(x) | |
tensor([[0, 1], | |
[2, 3]]) | |
>>> x = torch.tensor(0.5) | |
>>> y = torch.tensor(1.) | |
>>> torch.atleast_2d((x, y)) | |
(tensor([[0.5000]]), tensor([[1.]])) | |
""" | |
# This wrapper exists to support variadic args. | |
if has_torch_function(tensors): | |
return handle_torch_function(atleast_2d, tensors, *tensors) | |
if len(tensors) == 1: | |
tensors = tensors[0] | |
return _VF.atleast_2d(tensors) # type: ignore[attr-defined] | |
def atleast_3d(*tensors): | |
r""" | |
Returns a 3-dimensional view of each input tensor with zero dimensions. | |
Input tensors with three or more dimensions are returned as-is. | |
Args: | |
input (Tensor or list of Tensors) | |
Returns: | |
output (Tensor or tuple of Tensors) | |
Example: | |
>>> x = torch.tensor(0.5) | |
>>> x | |
tensor(0.5000) | |
>>> torch.atleast_3d(x) | |
tensor([[[0.5000]]]) | |
>>> y = torch.arange(4).view(2, 2) | |
>>> y | |
tensor([[0, 1], | |
[2, 3]]) | |
>>> torch.atleast_3d(y) | |
tensor([[[0], | |
[1]], | |
<BLANKLINE> | |
[[2], | |
[3]]]) | |
>>> x = torch.tensor(1).view(1, 1, 1) | |
>>> x | |
tensor([[[1]]]) | |
>>> torch.atleast_3d(x) | |
tensor([[[1]]]) | |
>>> x = torch.tensor(0.5) | |
>>> y = torch.tensor(1.) | |
>>> torch.atleast_3d((x, y)) | |
(tensor([[[0.5000]]]), tensor([[[1.]]])) | |
""" | |
# This wrapper exists to support variadic args. | |
if has_torch_function(tensors): | |
return handle_torch_function(atleast_3d, tensors, *tensors) | |
if len(tensors) == 1: | |
tensors = tensors[0] | |
return _VF.atleast_3d(tensors) # type: ignore[attr-defined] | |
if TYPE_CHECKING: | |
pass | |
# There's no good way to use this type annotation; cannot rename norm() to | |
# _norm_impl() in a way that doesn't break JIT overloads. So leave untyped | |
# for mypy for now. | |
# def norm(input: Tensor, | |
# p: Optional[Union[str, Number]] = "fro", | |
# dim: Optional[Union[int, List[int]]] = None, | |
# keepdim: bool = False, | |
# out: Optional[Tensor] = None, | |
# dtype: _dtype = None) -> Tensor: | |
# return _norm_impl(input, p, dim, keepdim, out, dtype) | |
else: | |
# TODO: type dim as BroadcastingList when | |
# https://github.com/pytorch/pytorch/issues/33782 is fixed | |
def norm(input, p="fro", dim=None, keepdim=False, out=None, dtype=None): | |
# type: (Tensor, str, Optional[List[int]], bool, Optional[Tensor], Optional[int]) -> Tensor | |
pass | |
# noqa: F811 | |
def norm(input, p="fro", dim=None, keepdim=False, out=None, dtype=None): # noqa: F811 | |
# type: (Tensor, Optional[number], Optional[List[int]], bool, Optional[Tensor], Optional[int]) -> Tensor | |
pass | |
# noqa: F811 | |
def norm(input, p="fro", dim=None, keepdim=False, out=None, dtype=None): # noqa: F811 | |
# type: (Tensor, Optional[number], Optional[int], bool, Optional[Tensor], Optional[int]) -> Tensor | |
pass | |
# noqa: F811 | |
def norm(input, p="fro", dim=None, keepdim=False, out=None, dtype=None): # noqa: F811 | |
# type: (Tensor, str, Optional[int], bool, Optional[Tensor], Optional[int]) -> Tensor | |
pass | |
def norm(input, p: Optional[Union[float, str]] = "fro", dim=None, keepdim=False, out=None, dtype=None): # noqa: F811 | |
r"""Returns the matrix norm or vector norm of a given tensor. | |
.. warning:: | |
torch.norm is deprecated and may be removed in a future PyTorch release. | |
Its documentation and behavior may be incorrect, and it is no longer | |
actively maintained. | |
Use :func:`torch.linalg.vector_norm` when computing vector norms and | |
:func:`torch.linalg.matrix_norm` when computing matrix norms. | |
For a function with a similar behavior as this one see :func:`torch.linalg.norm`. | |
Note, however, the signature for these functions is slightly different than the | |
signature for ``torch.norm``. | |
Args: | |
input (Tensor): The input tensor. Its data type must be either a floating | |
point or complex type. For complex inputs, the norm is calculated using the | |
absolute value of each element. If the input is complex and neither | |
:attr:`dtype` nor :attr:`out` is specified, the result's data type will | |
be the corresponding floating point type (e.g. float if :attr:`input` is | |
complexfloat). | |
p (int, float, inf, -inf, 'fro', 'nuc', optional): the order of norm. Default: ``'fro'`` | |
The following norms can be calculated: | |
====== ============== ========================== | |
ord matrix norm vector norm | |
====== ============== ========================== | |
'fro' Frobenius norm -- | |
'nuc' nuclear norm -- | |
Number -- sum(abs(x)**ord)**(1./ord) | |
====== ============== ========================== | |
The vector norm can be calculated across any number of dimensions. | |
The corresponding dimensions of :attr:`input` are flattened into | |
one dimension, and the norm is calculated on the flattened | |
dimension. | |
Frobenius norm produces the same result as ``p=2`` in all cases | |
except when :attr:`dim` is a list of three or more dims, in which | |
case Frobenius norm throws an error. | |
Nuclear norm can only be calculated across exactly two dimensions. | |
dim (int, tuple of ints, list of ints, optional): | |
Specifies which dimension or dimensions of :attr:`input` to | |
calculate the norm across. If :attr:`dim` is ``None``, the norm will | |
be calculated across all dimensions of :attr:`input`. If the norm | |
type indicated by :attr:`p` does not support the specified number of | |
dimensions, an error will occur. | |
keepdim (bool, optional): whether the output tensors have :attr:`dim` | |
retained or not. Ignored if :attr:`dim` = ``None`` and | |
:attr:`out` = ``None``. Default: ``False`` | |
out (Tensor, optional): the output tensor. Ignored if | |
:attr:`dim` = ``None`` and :attr:`out` = ``None``. | |
dtype (:class:`torch.dtype`, optional): the desired data type of | |
returned tensor. If specified, the input tensor is casted to | |
:attr:`dtype` while performing the operation. Default: None. | |
.. note:: | |
Even though ``p='fro'`` supports any number of dimensions, the true | |
mathematical definition of Frobenius norm only applies to tensors with | |
exactly two dimensions. :func:`torch.linalg.matrix_norm` with ``ord='fro'`` | |
aligns with the mathematical definition, since it can only be applied across | |
exactly two dimensions. | |
Example:: | |
>>> import torch | |
>>> a = torch.arange(9, dtype= torch.float) - 4 | |
>>> b = a.reshape((3, 3)) | |
>>> torch.norm(a) | |
tensor(7.7460) | |
>>> torch.norm(b) | |
tensor(7.7460) | |
>>> torch.norm(a, float('inf')) | |
tensor(4.) | |
>>> torch.norm(b, float('inf')) | |
tensor(4.) | |
>>> c = torch.tensor([[ 1, 2, 3], [-1, 1, 4]] , dtype=torch.float) | |
>>> torch.norm(c, dim=0) | |
tensor([1.4142, 2.2361, 5.0000]) | |
>>> torch.norm(c, dim=1) | |
tensor([3.7417, 4.2426]) | |
>>> torch.norm(c, p=1, dim=1) | |
tensor([6., 6.]) | |
>>> d = torch.arange(8, dtype=torch.float).reshape(2, 2, 2) | |
>>> torch.norm(d, dim=(1, 2)) | |
tensor([ 3.7417, 11.2250]) | |
>>> torch.norm(d[0, :, :]), torch.norm(d[1, :, :]) | |
(tensor(3.7417), tensor(11.2250)) | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
norm, (input,), input, p=p, dim=dim, keepdim=keepdim, out=out, dtype=dtype) | |
# NB. All the repeated code and weird python is to please TorchScript. | |
# For a more compact implementation see the relevant function in `_refs/__init__.py` | |
# We don't do this for MPS or sparse tensors | |
if input.layout == torch.strided and input.device.type in \ | |
("cpu", "cuda", "meta", torch.utils.backend_registration._privateuse1_backend_name): | |
if dim is not None: | |
if isinstance(dim, (int, torch.SymInt)): | |
_dim = [dim] | |
else: | |
_dim = dim | |
else: | |
_dim = None # type: ignore[assignment] | |
if isinstance(p, str): | |
if p == "fro" and (dim is None or isinstance(dim, (int, torch.SymInt)) or len(dim) <= 2): | |
if out is None: | |
return torch.linalg.vector_norm(input, 2, _dim, keepdim, dtype=dtype) | |
else: | |
return torch.linalg.vector_norm(input, 2, _dim, keepdim, dtype=dtype, out=out) | |
# Here we either call the nuclear norm, or we call matrix_norm with some arguments | |
# that will throw an error | |
if _dim is None: | |
_dim = list(range(input.ndim)) | |
if out is None: | |
return torch.linalg.matrix_norm(input, p, _dim, keepdim, dtype=dtype) | |
else: | |
return torch.linalg.matrix_norm(input, p, _dim, keepdim, dtype=dtype, out=out) | |
else: | |
# NB. p should be Union[str, number], not Optional! | |
_p = 2.0 if p is None else p | |
if out is None: | |
return torch.linalg.vector_norm(input, _p, _dim, keepdim, dtype=dtype) | |
else: | |
return torch.linalg.vector_norm(input, _p, _dim, keepdim, dtype=dtype, out=out) | |
ndim = input.dim() | |
# catch default case | |
if dim is None and out is None and dtype is None and p is not None: | |
if isinstance(p, str): | |
if p == "fro": | |
return _VF.frobenius_norm(input, dim=(), keepdim=keepdim) | |
if not isinstance(p, str): | |
_dim = [i for i in range(ndim)] # noqa: C416 TODO: rewrite as list(range(m)) | |
return _VF.norm(input, p, dim=_dim, keepdim=keepdim) # type: ignore[attr-defined] | |
# TODO: when https://github.com/pytorch/pytorch/issues/33782 is fixed | |
# remove the overloads where dim is an int and replace with BraodcastingList1 | |
# and remove next four lines, replace _dim with dim | |
if dim is not None: | |
if isinstance(dim, (int, torch.SymInt)): | |
_dim = [dim] | |
else: | |
_dim = dim | |
else: | |
_dim = None # type: ignore[assignment] | |
if isinstance(p, str): | |
if p == "fro": | |
if dtype is not None: | |
raise ValueError("dtype argument is not supported in frobenius norm") | |
if _dim is None: | |
_dim = list(range(ndim)) | |
if out is None: | |
return _VF.frobenius_norm(input, _dim, keepdim=keepdim) # type: ignore[arg-type] | |
else: | |
return _VF.frobenius_norm(input, _dim, keepdim=keepdim, out=out) # type: ignore[arg-type] | |
elif p == "nuc": | |
if dtype is not None: | |
raise ValueError("dtype argument is not supported in nuclear norm") | |
if _dim is None: | |
if out is None: | |
return _VF.nuclear_norm(input, keepdim=keepdim) # type: ignore[arg-type] | |
else: | |
return _VF.nuclear_norm(input, keepdim=keepdim, out=out) # type: ignore[arg-type] | |
else: | |
if out is None: | |
return _VF.nuclear_norm(input, _dim, keepdim=keepdim) # type: ignore[arg-type] | |
else: | |
return _VF.nuclear_norm(input, _dim, keepdim=keepdim, out=out) # type: ignore[arg-type] | |
raise RuntimeError(f"only valid string values are 'fro' and 'nuc', found {p}") | |
else: | |
if _dim is None: | |
_dim = list(range(ndim)) | |
if out is None: | |
if dtype is None: | |
return _VF.norm(input, p, _dim, keepdim=keepdim) # type: ignore[attr-defined] | |
else: | |
return _VF.norm(input, p, _dim, keepdim=keepdim, dtype=dtype) # type: ignore[attr-defined] | |
else: | |
if dtype is None: | |
return _VF.norm(input, p, _dim, keepdim=keepdim, out=out) # type: ignore[attr-defined] | |
else: | |
return _VF.norm(input, p, _dim, keepdim=keepdim, dtype=dtype, out=out) # type: ignore[attr-defined] | |
def unravel_index(indices: Tensor, shape: Union[int, Sequence[int], torch.Size]) -> Tuple[Tensor, ...]: | |
r"""Converts a tensor of flat indices into a tuple of coordinate tensors that | |
index into an arbitrary tensor of the specified shape. | |
Args: | |
indices (Tensor): An integer tensor containing indices into the | |
flattened version of an arbitrary tensor of shape :attr:`shape`. | |
All elements must be in the range ``[0, prod(shape) - 1]``. | |
shape (int, sequence of ints, or torch.Size): The shape of the arbitrary | |
tensor. All elements must be non-negative. | |
Returns: | |
tuple of Tensors: Each ``i``-th tensor in the output corresponds with | |
dimension ``i`` of :attr:`shape`. Each tensor has the same shape as | |
``indices`` and contains one index into dimension ``i`` for each of the | |
flat indices given by ``indices``. | |
Example:: | |
>>> import torch | |
>>> torch.unravel_index(torch.tensor(4), (3, 2)) | |
(tensor(2), | |
tensor(0)) | |
>>> torch.unravel_index(torch.tensor([4, 1]), (3, 2)) | |
(tensor([2, 0]), | |
tensor([0, 1])) | |
>>> torch.unravel_index(torch.tensor([0, 1, 2, 3, 4, 5]), (3, 2)) | |
(tensor([0, 0, 1, 1, 2, 2]), | |
tensor([0, 1, 0, 1, 0, 1])) | |
>>> torch.unravel_index(torch.tensor([1234, 5678]), (10, 10, 10, 10)) | |
(tensor([1, 5]), | |
tensor([2, 6]), | |
tensor([3, 7]), | |
tensor([4, 8])) | |
>>> torch.unravel_index(torch.tensor([[1234], [5678]]), (10, 10, 10, 10)) | |
(tensor([[1], [5]]), | |
tensor([[2], [6]]), | |
tensor([[3], [7]]), | |
tensor([[4], [8]])) | |
>>> torch.unravel_index(torch.tensor([[1234], [5678]]), (100, 100)) | |
(tensor([[12], [56]]), | |
tensor([[34], [78]])) | |
""" | |
if has_torch_function_unary(indices): | |
return handle_torch_function( | |
unravel_index, (indices,), indices, shape=shape) | |
res_tensor = _unravel_index(indices, shape) | |
return res_tensor.unbind(-1) | |
def _unravel_index(indices: Tensor, shape: Union[int, Sequence[int]]) -> Tensor: | |
torch._check_type( | |
not indices.is_complex() and not indices.is_floating_point() and not indices.dtype == torch.bool, | |
lambda: f"expected 'indices' to be integer dtype, but got {indices.dtype}") | |
torch._check_type( | |
isinstance(shape, (int, torch.SymInt, Sequence)), | |
lambda: f"expected 'shape' to be int or sequence of ints, but got {type(shape)}") | |
if isinstance(shape, (int, torch.SymInt)): | |
shape = torch.Size([shape]) | |
else: | |
for dim in shape: | |
torch._check_type( | |
isinstance(dim, (int, torch.SymInt)), | |
lambda: f"expected 'shape' sequence to only contain ints, but got {type(dim)}") | |
shape = torch.Size(shape) | |
torch._check_value( | |
all(dim >= 0 for dim in shape), | |
lambda: f"'shape' cannot have negative values, but got {tuple(shape)}") | |
coefs = list(reversed(list(itertools.accumulate(reversed(shape[1:] + torch.Size([1])), func=operator.mul)))) | |
return indices.unsqueeze(-1).floor_divide( | |
torch.tensor(coefs, device=indices.device, dtype=torch.int64) | |
) % torch.tensor(shape, device=indices.device, dtype=torch.int64) | |
def chain_matmul(*matrices, out=None): | |
r"""Returns the matrix product of the :math:`N` 2-D tensors. This product is efficiently computed | |
using the matrix chain order algorithm which selects the order in which incurs the lowest cost in terms | |
of arithmetic operations (`[CLRS]`_). Note that since this is a function to compute the product, :math:`N` | |
needs to be greater than or equal to 2; if equal to 2 then a trivial matrix-matrix product is returned. | |
If :math:`N` is 1, then this is a no-op - the original matrix is returned as is. | |
.. warning:: | |
:func:`torch.chain_matmul` is deprecated and will be removed in a future PyTorch release. | |
Use :func:`torch.linalg.multi_dot` instead, which accepts a list of two or more tensors | |
rather than multiple arguments. | |
Args: | |
matrices (Tensors...): a sequence of 2 or more 2-D tensors whose product is to be determined. | |
out (Tensor, optional): the output tensor. Ignored if :attr:`out` = ``None``. | |
Returns: | |
Tensor: if the :math:`i^{th}` tensor was of dimensions :math:`p_{i} \times p_{i + 1}`, then the product | |
would be of dimensions :math:`p_{1} \times p_{N + 1}`. | |
Example:: | |
>>> # xdoctest: +SKIP | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> a = torch.randn(3, 4) | |
>>> b = torch.randn(4, 5) | |
>>> c = torch.randn(5, 6) | |
>>> d = torch.randn(6, 7) | |
>>> # will raise a deprecation warning | |
>>> torch.chain_matmul(a, b, c, d) | |
tensor([[ -2.3375, -3.9790, -4.1119, -6.6577, 9.5609, -11.5095, -3.2614], | |
[ 21.4038, 3.3378, -8.4982, -5.2457, -10.2561, -2.4684, 2.7163], | |
[ -0.9647, -5.8917, -2.3213, -5.2284, 12.8615, -12.2816, -2.5095]]) | |
.. _`[CLRS]`: https://mitpress.mit.edu/books/introduction-algorithms-third-edition | |
""" | |
# This wrapper exists to support variadic args. | |
if has_torch_function(matrices): | |
return handle_torch_function(chain_matmul, matrices, *matrices) | |
if out is None: | |
return _VF.chain_matmul(matrices) # type: ignore[attr-defined] | |
else: | |
return _VF.chain_matmul(matrices, out=out) # type: ignore[attr-defined] | |
def _lu_impl(A, pivot=True, get_infos=False, out=None): | |
# type: (Tensor, bool, bool, Any) -> Tuple[Tensor, Tensor, Tensor] | |
r"""Computes the LU factorization of a matrix or batches of matrices | |
:attr:`A`. Returns a tuple containing the LU factorization and | |
pivots of :attr:`A`. Pivoting is done if :attr:`pivot` is set to | |
``True``. | |
.. warning:: | |
:func:`torch.lu` is deprecated in favor of :func:`torch.linalg.lu_factor` | |
and :func:`torch.linalg.lu_factor_ex`. :func:`torch.lu` will be removed in a | |
future PyTorch release. | |
``LU, pivots, info = torch.lu(A, compute_pivots)`` should be replaced with | |
.. code:: python | |
LU, pivots = torch.linalg.lu_factor(A, compute_pivots) | |
``LU, pivots, info = torch.lu(A, compute_pivots, get_infos=True)`` should be replaced with | |
.. code:: python | |
LU, pivots, info = torch.linalg.lu_factor_ex(A, compute_pivots) | |
.. note:: | |
* The returned permutation matrix for every matrix in the batch is | |
represented by a 1-indexed vector of size ``min(A.shape[-2], A.shape[-1])``. | |
``pivots[i] == j`` represents that in the ``i``-th step of the algorithm, | |
the ``i``-th row was permuted with the ``j-1``-th row. | |
* LU factorization with :attr:`pivot` = ``False`` is not available | |
for CPU, and attempting to do so will throw an error. However, | |
LU factorization with :attr:`pivot` = ``False`` is available for | |
CUDA. | |
* This function does not check if the factorization was successful | |
or not if :attr:`get_infos` is ``True`` since the status of the | |
factorization is present in the third element of the return tuple. | |
* In the case of batches of square matrices with size less or equal | |
to 32 on a CUDA device, the LU factorization is repeated for | |
singular matrices due to the bug in the MAGMA library | |
(see magma issue 13). | |
* ``L``, ``U``, and ``P`` can be derived using :func:`torch.lu_unpack`. | |
.. warning:: | |
The gradients of this function will only be finite when :attr:`A` is full rank. | |
This is because the LU decomposition is just differentiable at full rank matrices. | |
Furthermore, if :attr:`A` is close to not being full rank, | |
the gradient will be numerically unstable as it depends on the computation of :math:`L^{-1}` and :math:`U^{-1}`. | |
Args: | |
A (Tensor): the tensor to factor of size :math:`(*, m, n)` | |
pivot (bool, optional): controls whether pivoting is done. Default: ``True`` | |
get_infos (bool, optional): if set to ``True``, returns an info IntTensor. | |
Default: ``False`` | |
out (tuple, optional): optional output tuple. If :attr:`get_infos` is ``True``, | |
then the elements in the tuple are Tensor, IntTensor, | |
and IntTensor. If :attr:`get_infos` is ``False``, then the | |
elements in the tuple are Tensor, IntTensor. Default: ``None`` | |
Returns: | |
(Tensor, IntTensor, IntTensor (optional)): A tuple of tensors containing | |
- **factorization** (*Tensor*): the factorization of size :math:`(*, m, n)` | |
- **pivots** (*IntTensor*): the pivots of size :math:`(*, \text{min}(m, n))`. | |
``pivots`` stores all the intermediate transpositions of rows. | |
The final permutation ``perm`` could be reconstructed by | |
applying ``swap(perm[i], perm[pivots[i] - 1])`` for ``i = 0, ..., pivots.size(-1) - 1``, | |
where ``perm`` is initially the identity permutation of :math:`m` elements | |
(essentially this is what :func:`torch.lu_unpack` is doing). | |
- **infos** (*IntTensor*, *optional*): if :attr:`get_infos` is ``True``, this is a tensor of | |
size :math:`(*)` where non-zero values indicate whether factorization for the matrix or | |
each minibatch has succeeded or failed | |
Example:: | |
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK) | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> A = torch.randn(2, 3, 3) | |
>>> A_LU, pivots = torch.lu(A) | |
>>> A_LU | |
tensor([[[ 1.3506, 2.5558, -0.0816], | |
[ 0.1684, 1.1551, 0.1940], | |
[ 0.1193, 0.6189, -0.5497]], | |
[[ 0.4526, 1.2526, -0.3285], | |
[-0.7988, 0.7175, -0.9701], | |
[ 0.2634, -0.9255, -0.3459]]]) | |
>>> pivots | |
tensor([[ 3, 3, 3], | |
[ 3, 3, 3]], dtype=torch.int32) | |
>>> A_LU, pivots, info = torch.lu(A, get_infos=True) | |
>>> if info.nonzero().size(0) == 0: | |
... print('LU factorization succeeded for all samples!') | |
LU factorization succeeded for all samples! | |
""" | |
# If get_infos is True, then we don't need to check for errors and vice versa | |
return torch._lu_with_info(A, pivot=pivot, check_errors=(not get_infos)) | |
if TYPE_CHECKING: | |
_ListOrSeq = Sequence[Tensor] | |
else: | |
_ListOrSeq = List[Tensor] | |
def _check_list_size(out_len: int, get_infos: bool, out: _ListOrSeq) -> None: | |
get_infos_int = 1 if get_infos else 0 | |
if out_len - get_infos_int != 2: | |
raise TypeError(f"expected tuple of {2 + int(get_infos)} elements but got {out_len}") | |
if not isinstance(out, (tuple, list)): | |
raise TypeError(f"argument 'out' must be tuple of Tensors, not {type(out).__name__}") | |
def _lu_with_infos(A, pivot=True, get_infos=False, out=None): | |
# type: (Tensor, bool, bool, Optional[Tuple[Tensor, Tensor, Tensor]]) -> Tuple[Tensor, Tensor, Tensor] | |
if has_torch_function_unary(A): | |
return handle_torch_function( | |
lu, (A,), A, pivot=pivot, get_infos=get_infos, out=out) | |
result = _lu_impl(A, pivot, get_infos, out) | |
if out is not None: | |
_check_list_size(len(out), get_infos, out) | |
for i in range(len(out)): | |
out[i].resize_as_(result[i]).copy_(result[i]) | |
return out | |
else: | |
return result # A_LU, pivots, infos | |
def _lu_no_infos(A, pivot=True, get_infos=False, out=None): | |
# type: (Tensor, bool, bool, Optional[Tuple[Tensor, Tensor]]) -> Tuple[Tensor, Tensor] | |
# need to check for torch_function here so that we exit if | |
if has_torch_function_unary(A): | |
return handle_torch_function( | |
lu, (A,), A, pivot=pivot, get_infos=get_infos, out=out) | |
result = _lu_impl(A, pivot, get_infos, out) | |
if out is not None: | |
_check_list_size(len(out), get_infos, out) | |
for i in range(len(out)): | |
out[i].resize_as_(result[i]).copy_(result[i]) | |
return out | |
else: | |
return result[0], result[1] # A_LU, pivots | |
# The return type of lu depends on `get_infos`, so in order to resolve the output type | |
# of lu in TorchScript we need to statically know the value of `get_infos` | |
lu = boolean_dispatch( | |
arg_name='get_infos', | |
arg_index=2, | |
default=False, | |
if_true=_lu_with_infos, | |
if_false=_lu_no_infos, | |
module_name=__name__, | |
func_name='lu') | |
lu.__doc__ = _lu_impl.__doc__ | |
def align_tensors(*tensors): | |
raise RuntimeError('`align_tensors` not yet implemented.') | |