Spaces:
Sleeping
Sleeping
from numbers import Number | |
import torch | |
from torch.distributions import constraints | |
from torch.distributions.exp_family import ExponentialFamily | |
from torch.distributions.utils import broadcast_all | |
__all__ = ["Poisson"] | |
class Poisson(ExponentialFamily): | |
r""" | |
Creates a Poisson distribution parameterized by :attr:`rate`, the rate parameter. | |
Samples are nonnegative integers, with a pmf given by | |
.. math:: | |
\mathrm{rate}^k \frac{e^{-\mathrm{rate}}}{k!} | |
Example:: | |
>>> # xdoctest: +SKIP("poisson_cpu not implemented for 'Long'") | |
>>> m = Poisson(torch.tensor([4])) | |
>>> m.sample() | |
tensor([ 3.]) | |
Args: | |
rate (Number, Tensor): the rate parameter | |
""" | |
arg_constraints = {"rate": constraints.nonnegative} | |
support = constraints.nonnegative_integer | |
def mean(self): | |
return self.rate | |
def mode(self): | |
return self.rate.floor() | |
def variance(self): | |
return self.rate | |
def __init__(self, rate, validate_args=None): | |
(self.rate,) = broadcast_all(rate) | |
if isinstance(rate, Number): | |
batch_shape = torch.Size() | |
else: | |
batch_shape = self.rate.size() | |
super().__init__(batch_shape, validate_args=validate_args) | |
def expand(self, batch_shape, _instance=None): | |
new = self._get_checked_instance(Poisson, _instance) | |
batch_shape = torch.Size(batch_shape) | |
new.rate = self.rate.expand(batch_shape) | |
super(Poisson, new).__init__(batch_shape, validate_args=False) | |
new._validate_args = self._validate_args | |
return new | |
def sample(self, sample_shape=torch.Size()): | |
shape = self._extended_shape(sample_shape) | |
with torch.no_grad(): | |
return torch.poisson(self.rate.expand(shape)) | |
def log_prob(self, value): | |
if self._validate_args: | |
self._validate_sample(value) | |
rate, value = broadcast_all(self.rate, value) | |
return value.xlogy(rate) - rate - (value + 1).lgamma() | |
def _natural_params(self): | |
return (torch.log(self.rate),) | |
def _log_normalizer(self, x): | |
return torch.exp(x) | |