Spaces:
Sleeping
Sleeping
import math | |
from numbers import Number, Real | |
import torch | |
from torch.distributions import constraints | |
from torch.distributions.exp_family import ExponentialFamily | |
from torch.distributions.utils import _standard_normal, broadcast_all | |
__all__ = ["Normal"] | |
class Normal(ExponentialFamily): | |
r""" | |
Creates a normal (also called Gaussian) distribution parameterized by | |
:attr:`loc` and :attr:`scale`. | |
Example:: | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> m = Normal(torch.tensor([0.0]), torch.tensor([1.0])) | |
>>> m.sample() # normally distributed with loc=0 and scale=1 | |
tensor([ 0.1046]) | |
Args: | |
loc (float or Tensor): mean of the distribution (often referred to as mu) | |
scale (float or Tensor): standard deviation of the distribution | |
(often referred to as sigma) | |
""" | |
arg_constraints = {"loc": constraints.real, "scale": constraints.positive} | |
support = constraints.real | |
has_rsample = True | |
_mean_carrier_measure = 0 | |
def mean(self): | |
return self.loc | |
def mode(self): | |
return self.loc | |
def stddev(self): | |
return self.scale | |
def variance(self): | |
return self.stddev.pow(2) | |
def __init__(self, loc, scale, validate_args=None): | |
self.loc, self.scale = broadcast_all(loc, scale) | |
if isinstance(loc, Number) and isinstance(scale, Number): | |
batch_shape = torch.Size() | |
else: | |
batch_shape = self.loc.size() | |
super().__init__(batch_shape, validate_args=validate_args) | |
def expand(self, batch_shape, _instance=None): | |
new = self._get_checked_instance(Normal, _instance) | |
batch_shape = torch.Size(batch_shape) | |
new.loc = self.loc.expand(batch_shape) | |
new.scale = self.scale.expand(batch_shape) | |
super(Normal, new).__init__(batch_shape, validate_args=False) | |
new._validate_args = self._validate_args | |
return new | |
def sample(self, sample_shape=torch.Size()): | |
shape = self._extended_shape(sample_shape) | |
with torch.no_grad(): | |
return torch.normal(self.loc.expand(shape), self.scale.expand(shape)) | |
def rsample(self, sample_shape=torch.Size()): | |
shape = self._extended_shape(sample_shape) | |
eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device) | |
return self.loc + eps * self.scale | |
def log_prob(self, value): | |
if self._validate_args: | |
self._validate_sample(value) | |
# compute the variance | |
var = self.scale**2 | |
log_scale = ( | |
math.log(self.scale) if isinstance(self.scale, Real) else self.scale.log() | |
) | |
return ( | |
-((value - self.loc) ** 2) / (2 * var) | |
- log_scale | |
- math.log(math.sqrt(2 * math.pi)) | |
) | |
def cdf(self, value): | |
if self._validate_args: | |
self._validate_sample(value) | |
return 0.5 * ( | |
1 + torch.erf((value - self.loc) * self.scale.reciprocal() / math.sqrt(2)) | |
) | |
def icdf(self, value): | |
return self.loc + self.scale * torch.erfinv(2 * value - 1) * math.sqrt(2) | |
def entropy(self): | |
return 0.5 + 0.5 * math.log(2 * math.pi) + torch.log(self.scale) | |
def _natural_params(self): | |
return (self.loc / self.scale.pow(2), -0.5 * self.scale.pow(2).reciprocal()) | |
def _log_normalizer(self, x, y): | |
return -0.25 * x.pow(2) / y + 0.5 * torch.log(-math.pi / y) | |