Spaces:
Sleeping
Sleeping
import torch | |
from torch import nan | |
from torch.distributions import constraints | |
from torch.distributions.transformed_distribution import TransformedDistribution | |
from torch.distributions.transforms import AffineTransform, PowerTransform | |
from torch.distributions.uniform import Uniform | |
from torch.distributions.utils import broadcast_all, euler_constant | |
__all__ = ["Kumaraswamy"] | |
def _moments(a, b, n): | |
""" | |
Computes nth moment of Kumaraswamy using using torch.lgamma | |
""" | |
arg1 = 1 + n / a | |
log_value = torch.lgamma(arg1) + torch.lgamma(b) - torch.lgamma(arg1 + b) | |
return b * torch.exp(log_value) | |
class Kumaraswamy(TransformedDistribution): | |
r""" | |
Samples from a Kumaraswamy distribution. | |
Example:: | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> m = Kumaraswamy(torch.tensor([1.0]), torch.tensor([1.0])) | |
>>> m.sample() # sample from a Kumaraswamy distribution with concentration alpha=1 and beta=1 | |
tensor([ 0.1729]) | |
Args: | |
concentration1 (float or Tensor): 1st concentration parameter of the distribution | |
(often referred to as alpha) | |
concentration0 (float or Tensor): 2nd concentration parameter of the distribution | |
(often referred to as beta) | |
""" | |
arg_constraints = { | |
"concentration1": constraints.positive, | |
"concentration0": constraints.positive, | |
} | |
support = constraints.unit_interval | |
has_rsample = True | |
def __init__(self, concentration1, concentration0, validate_args=None): | |
self.concentration1, self.concentration0 = broadcast_all( | |
concentration1, concentration0 | |
) | |
finfo = torch.finfo(self.concentration0.dtype) | |
base_dist = Uniform( | |
torch.full_like(self.concentration0, 0), | |
torch.full_like(self.concentration0, 1), | |
validate_args=validate_args, | |
) | |
transforms = [ | |
PowerTransform(exponent=self.concentration0.reciprocal()), | |
AffineTransform(loc=1.0, scale=-1.0), | |
PowerTransform(exponent=self.concentration1.reciprocal()), | |
] | |
super().__init__(base_dist, transforms, validate_args=validate_args) | |
def expand(self, batch_shape, _instance=None): | |
new = self._get_checked_instance(Kumaraswamy, _instance) | |
new.concentration1 = self.concentration1.expand(batch_shape) | |
new.concentration0 = self.concentration0.expand(batch_shape) | |
return super().expand(batch_shape, _instance=new) | |
def mean(self): | |
return _moments(self.concentration1, self.concentration0, 1) | |
def mode(self): | |
# Evaluate in log-space for numerical stability. | |
log_mode = ( | |
self.concentration0.reciprocal() * (-self.concentration0).log1p() | |
- (-self.concentration0 * self.concentration1).log1p() | |
) | |
log_mode[(self.concentration0 < 1) | (self.concentration1 < 1)] = nan | |
return log_mode.exp() | |
def variance(self): | |
return _moments(self.concentration1, self.concentration0, 2) - torch.pow( | |
self.mean, 2 | |
) | |
def entropy(self): | |
t1 = 1 - self.concentration1.reciprocal() | |
t0 = 1 - self.concentration0.reciprocal() | |
H0 = torch.digamma(self.concentration0 + 1) + euler_constant | |
return ( | |
t0 | |
+ t1 * H0 | |
- torch.log(self.concentration1) | |
- torch.log(self.concentration0) | |
) | |