Spaces:
Sleeping
Sleeping
import torch | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from torch.distributions import constraints | |
from torch.distributions.exp_family import ExponentialFamily | |
__all__ = ["Dirichlet"] | |
# This helper is exposed for testing. | |
def _Dirichlet_backward(x, concentration, grad_output): | |
total = concentration.sum(-1, True).expand_as(concentration) | |
grad = torch._dirichlet_grad(x, concentration, total) | |
return grad * (grad_output - (x * grad_output).sum(-1, True)) | |
class _Dirichlet(Function): | |
def forward(ctx, concentration): | |
x = torch._sample_dirichlet(concentration) | |
ctx.save_for_backward(x, concentration) | |
return x | |
def backward(ctx, grad_output): | |
x, concentration = ctx.saved_tensors | |
return _Dirichlet_backward(x, concentration, grad_output) | |
class Dirichlet(ExponentialFamily): | |
r""" | |
Creates a Dirichlet distribution parameterized by concentration :attr:`concentration`. | |
Example:: | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> m = Dirichlet(torch.tensor([0.5, 0.5])) | |
>>> m.sample() # Dirichlet distributed with concentration [0.5, 0.5] | |
tensor([ 0.1046, 0.8954]) | |
Args: | |
concentration (Tensor): concentration parameter of the distribution | |
(often referred to as alpha) | |
""" | |
arg_constraints = { | |
"concentration": constraints.independent(constraints.positive, 1) | |
} | |
support = constraints.simplex | |
has_rsample = True | |
def __init__(self, concentration, validate_args=None): | |
if concentration.dim() < 1: | |
raise ValueError( | |
"`concentration` parameter must be at least one-dimensional." | |
) | |
self.concentration = concentration | |
batch_shape, event_shape = concentration.shape[:-1], concentration.shape[-1:] | |
super().__init__(batch_shape, event_shape, validate_args=validate_args) | |
def expand(self, batch_shape, _instance=None): | |
new = self._get_checked_instance(Dirichlet, _instance) | |
batch_shape = torch.Size(batch_shape) | |
new.concentration = self.concentration.expand(batch_shape + self.event_shape) | |
super(Dirichlet, new).__init__( | |
batch_shape, self.event_shape, validate_args=False | |
) | |
new._validate_args = self._validate_args | |
return new | |
def rsample(self, sample_shape=()): | |
shape = self._extended_shape(sample_shape) | |
concentration = self.concentration.expand(shape) | |
return _Dirichlet.apply(concentration) | |
def log_prob(self, value): | |
if self._validate_args: | |
self._validate_sample(value) | |
return ( | |
torch.xlogy(self.concentration - 1.0, value).sum(-1) | |
+ torch.lgamma(self.concentration.sum(-1)) | |
- torch.lgamma(self.concentration).sum(-1) | |
) | |
def mean(self): | |
return self.concentration / self.concentration.sum(-1, True) | |
def mode(self): | |
concentrationm1 = (self.concentration - 1).clamp(min=0.0) | |
mode = concentrationm1 / concentrationm1.sum(-1, True) | |
mask = (self.concentration < 1).all(axis=-1) | |
mode[mask] = torch.nn.functional.one_hot( | |
mode[mask].argmax(axis=-1), concentrationm1.shape[-1] | |
).to(mode) | |
return mode | |
def variance(self): | |
con0 = self.concentration.sum(-1, True) | |
return ( | |
self.concentration | |
* (con0 - self.concentration) | |
/ (con0.pow(2) * (con0 + 1)) | |
) | |
def entropy(self): | |
k = self.concentration.size(-1) | |
a0 = self.concentration.sum(-1) | |
return ( | |
torch.lgamma(self.concentration).sum(-1) | |
- torch.lgamma(a0) | |
- (k - a0) * torch.digamma(a0) | |
- ((self.concentration - 1.0) * torch.digamma(self.concentration)).sum(-1) | |
) | |
def _natural_params(self): | |
return (self.concentration,) | |
def _log_normalizer(self, x): | |
return x.lgamma().sum(-1) - torch.lgamma(x.sum(-1)) | |