Spaces:
Sleeping
Sleeping
from sympy.core.numbers import Rational | |
from sympy.core.singleton import S | |
from sympy.core.symbol import symbols | |
from sympy.functions.elementary.complexes import sign | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.polys.polytools import gcd | |
from sympy.sets.sets import Complement | |
from sympy.core import Basic, Tuple, diff, expand, Eq, Integer | |
from sympy.core.sorting import ordered | |
from sympy.core.symbol import _symbol | |
from sympy.solvers import solveset, nonlinsolve, diophantine | |
from sympy.polys import total_degree | |
from sympy.geometry import Point | |
from sympy.ntheory.factor_ import core | |
class ImplicitRegion(Basic): | |
""" | |
Represents an implicit region in space. | |
Examples | |
======== | |
>>> from sympy import Eq | |
>>> from sympy.abc import x, y, z, t | |
>>> from sympy.vector import ImplicitRegion | |
>>> ImplicitRegion((x, y), x**2 + y**2 - 4) | |
ImplicitRegion((x, y), x**2 + y**2 - 4) | |
>>> ImplicitRegion((x, y), Eq(y*x, 1)) | |
ImplicitRegion((x, y), x*y - 1) | |
>>> parabola = ImplicitRegion((x, y), y**2 - 4*x) | |
>>> parabola.degree | |
2 | |
>>> parabola.equation | |
-4*x + y**2 | |
>>> parabola.rational_parametrization(t) | |
(4/t**2, 4/t) | |
>>> r = ImplicitRegion((x, y, z), Eq(z, x**2 + y**2)) | |
>>> r.variables | |
(x, y, z) | |
>>> r.singular_points() | |
EmptySet | |
>>> r.regular_point() | |
(-10, -10, 200) | |
Parameters | |
========== | |
variables : tuple to map variables in implicit equation to base scalars. | |
equation : An expression or Eq denoting the implicit equation of the region. | |
""" | |
def __new__(cls, variables, equation): | |
if not isinstance(variables, Tuple): | |
variables = Tuple(*variables) | |
if isinstance(equation, Eq): | |
equation = equation.lhs - equation.rhs | |
return super().__new__(cls, variables, equation) | |
def variables(self): | |
return self.args[0] | |
def equation(self): | |
return self.args[1] | |
def degree(self): | |
return total_degree(self.equation) | |
def regular_point(self): | |
""" | |
Returns a point on the implicit region. | |
Examples | |
======== | |
>>> from sympy.abc import x, y, z | |
>>> from sympy.vector import ImplicitRegion | |
>>> circle = ImplicitRegion((x, y), (x + 2)**2 + (y - 3)**2 - 16) | |
>>> circle.regular_point() | |
(-2, -1) | |
>>> parabola = ImplicitRegion((x, y), x**2 - 4*y) | |
>>> parabola.regular_point() | |
(0, 0) | |
>>> r = ImplicitRegion((x, y, z), (x + y + z)**4) | |
>>> r.regular_point() | |
(-10, -10, 20) | |
References | |
========== | |
- Erik Hillgarter, "Rational Points on Conics", Diploma Thesis, RISC-Linz, | |
J. Kepler Universitat Linz, 1996. Available: | |
https://www3.risc.jku.at/publications/download/risc_1355/Rational%20Points%20on%20Conics.pdf | |
""" | |
equation = self.equation | |
if len(self.variables) == 1: | |
return (list(solveset(equation, self.variables[0], domain=S.Reals))[0],) | |
elif len(self.variables) == 2: | |
if self.degree == 2: | |
coeffs = a, b, c, d, e, f = conic_coeff(self.variables, equation) | |
if b**2 == 4*a*c: | |
x_reg, y_reg = self._regular_point_parabola(*coeffs) | |
else: | |
x_reg, y_reg = self._regular_point_ellipse(*coeffs) | |
return x_reg, y_reg | |
if len(self.variables) == 3: | |
x, y, z = self.variables | |
for x_reg in range(-10, 10): | |
for y_reg in range(-10, 10): | |
if not solveset(equation.subs({x: x_reg, y: y_reg}), self.variables[2], domain=S.Reals).is_empty: | |
return (x_reg, y_reg, list(solveset(equation.subs({x: x_reg, y: y_reg})))[0]) | |
if len(self.singular_points()) != 0: | |
return list[self.singular_points()][0] | |
raise NotImplementedError() | |
def _regular_point_parabola(self, a, b, c, d, e, f): | |
ok = (a, d) != (0, 0) and (c, e) != (0, 0) and b**2 == 4*a*c and (a, c) != (0, 0) | |
if not ok: | |
raise ValueError("Rational Point on the conic does not exist") | |
if a != 0: | |
d_dash, f_dash = (4*a*e - 2*b*d, 4*a*f - d**2) | |
if d_dash != 0: | |
y_reg = -f_dash/d_dash | |
x_reg = -(d + b*y_reg)/(2*a) | |
else: | |
ok = False | |
elif c != 0: | |
d_dash, f_dash = (4*c*d - 2*b*e, 4*c*f - e**2) | |
if d_dash != 0: | |
x_reg = -f_dash/d_dash | |
y_reg = -(e + b*x_reg)/(2*c) | |
else: | |
ok = False | |
if ok: | |
return x_reg, y_reg | |
else: | |
raise ValueError("Rational Point on the conic does not exist") | |
def _regular_point_ellipse(self, a, b, c, d, e, f): | |
D = 4*a*c - b**2 | |
ok = D | |
if not ok: | |
raise ValueError("Rational Point on the conic does not exist") | |
if a == 0 and c == 0: | |
K = -1 | |
L = 4*(d*e - b*f) | |
elif c != 0: | |
K = D | |
L = 4*c**2*d**2 - 4*b*c*d*e + 4*a*c*e**2 + 4*b**2*c*f - 16*a*c**2*f | |
else: | |
K = D | |
L = 4*a**2*e**2 - 4*b*a*d*e + 4*b**2*a*f | |
ok = L != 0 and not(K > 0 and L < 0) | |
if not ok: | |
raise ValueError("Rational Point on the conic does not exist") | |
K = Rational(K).limit_denominator(10**12) | |
L = Rational(L).limit_denominator(10**12) | |
k1, k2 = K.p, K.q | |
l1, l2 = L.p, L.q | |
g = gcd(k2, l2) | |
a1 = (l2*k2)/g | |
b1 = (k1*l2)/g | |
c1 = -(l1*k2)/g | |
a2 = sign(a1)*core(abs(a1), 2) | |
r1 = sqrt(a1/a2) | |
b2 = sign(b1)*core(abs(b1), 2) | |
r2 = sqrt(b1/b2) | |
c2 = sign(c1)*core(abs(c1), 2) | |
r3 = sqrt(c1/c2) | |
g = gcd(gcd(a2, b2), c2) | |
a2 = a2/g | |
b2 = b2/g | |
c2 = c2/g | |
g1 = gcd(a2, b2) | |
a2 = a2/g1 | |
b2 = b2/g1 | |
c2 = c2*g1 | |
g2 = gcd(a2,c2) | |
a2 = a2/g2 | |
b2 = b2*g2 | |
c2 = c2/g2 | |
g3 = gcd(b2, c2) | |
a2 = a2*g3 | |
b2 = b2/g3 | |
c2 = c2/g3 | |
x, y, z = symbols("x y z") | |
eq = a2*x**2 + b2*y**2 + c2*z**2 | |
solutions = diophantine(eq) | |
if len(solutions) == 0: | |
raise ValueError("Rational Point on the conic does not exist") | |
flag = False | |
for sol in solutions: | |
syms = Tuple(*sol).free_symbols | |
rep = dict.fromkeys(syms, 3) | |
sol_z = sol[2] | |
if sol_z == 0: | |
flag = True | |
continue | |
if not isinstance(sol_z, (int, Integer)): | |
syms_z = sol_z.free_symbols | |
if len(syms_z) == 1: | |
p = next(iter(syms_z)) | |
p_values = Complement(S.Integers, solveset(Eq(sol_z, 0), p, S.Integers)) | |
rep[p] = next(iter(p_values)) | |
if len(syms_z) == 2: | |
p, q = list(ordered(syms_z)) | |
for i in S.Integers: | |
subs_sol_z = sol_z.subs(p, i) | |
q_values = Complement(S.Integers, solveset(Eq(subs_sol_z, 0), q, S.Integers)) | |
if not q_values.is_empty: | |
rep[p] = i | |
rep[q] = next(iter(q_values)) | |
break | |
if len(syms) != 0: | |
x, y, z = tuple(s.subs(rep) for s in sol) | |
else: | |
x, y, z = sol | |
flag = False | |
break | |
if flag: | |
raise ValueError("Rational Point on the conic does not exist") | |
x = (x*g3)/r1 | |
y = (y*g2)/r2 | |
z = (z*g1)/r3 | |
x = x/z | |
y = y/z | |
if a == 0 and c == 0: | |
x_reg = (x + y - 2*e)/(2*b) | |
y_reg = (x - y - 2*d)/(2*b) | |
elif c != 0: | |
x_reg = (x - 2*d*c + b*e)/K | |
y_reg = (y - b*x_reg - e)/(2*c) | |
else: | |
y_reg = (x - 2*e*a + b*d)/K | |
x_reg = (y - b*y_reg - d)/(2*a) | |
return x_reg, y_reg | |
def singular_points(self): | |
""" | |
Returns a set of singular points of the region. | |
The singular points are those points on the region | |
where all partial derivatives vanish. | |
Examples | |
======== | |
>>> from sympy.abc import x, y | |
>>> from sympy.vector import ImplicitRegion | |
>>> I = ImplicitRegion((x, y), (y-1)**2 -x**3 + 2*x**2 -x) | |
>>> I.singular_points() | |
{(1, 1)} | |
""" | |
eq_list = [self.equation] | |
for var in self.variables: | |
eq_list += [diff(self.equation, var)] | |
return nonlinsolve(eq_list, list(self.variables)) | |
def multiplicity(self, point): | |
""" | |
Returns the multiplicity of a singular point on the region. | |
A singular point (x,y) of region is said to be of multiplicity m | |
if all the partial derivatives off to order m - 1 vanish there. | |
Examples | |
======== | |
>>> from sympy.abc import x, y, z | |
>>> from sympy.vector import ImplicitRegion | |
>>> I = ImplicitRegion((x, y, z), x**2 + y**3 - z**4) | |
>>> I.singular_points() | |
{(0, 0, 0)} | |
>>> I.multiplicity((0, 0, 0)) | |
2 | |
""" | |
if isinstance(point, Point): | |
point = point.args | |
modified_eq = self.equation | |
for i, var in enumerate(self.variables): | |
modified_eq = modified_eq.subs(var, var + point[i]) | |
modified_eq = expand(modified_eq) | |
if len(modified_eq.args) != 0: | |
terms = modified_eq.args | |
m = min(total_degree(term) for term in terms) | |
else: | |
terms = modified_eq | |
m = total_degree(terms) | |
return m | |
def rational_parametrization(self, parameters=('t', 's'), reg_point=None): | |
""" | |
Returns the rational parametrization of implicit region. | |
Examples | |
======== | |
>>> from sympy import Eq | |
>>> from sympy.abc import x, y, z, s, t | |
>>> from sympy.vector import ImplicitRegion | |
>>> parabola = ImplicitRegion((x, y), y**2 - 4*x) | |
>>> parabola.rational_parametrization() | |
(4/t**2, 4/t) | |
>>> circle = ImplicitRegion((x, y), Eq(x**2 + y**2, 4)) | |
>>> circle.rational_parametrization() | |
(4*t/(t**2 + 1), 4*t**2/(t**2 + 1) - 2) | |
>>> I = ImplicitRegion((x, y), x**3 + x**2 - y**2) | |
>>> I.rational_parametrization() | |
(t**2 - 1, t*(t**2 - 1)) | |
>>> cubic_curve = ImplicitRegion((x, y), x**3 + x**2 - y**2) | |
>>> cubic_curve.rational_parametrization(parameters=(t)) | |
(t**2 - 1, t*(t**2 - 1)) | |
>>> sphere = ImplicitRegion((x, y, z), x**2 + y**2 + z**2 - 4) | |
>>> sphere.rational_parametrization(parameters=(t, s)) | |
(-2 + 4/(s**2 + t**2 + 1), 4*s/(s**2 + t**2 + 1), 4*t/(s**2 + t**2 + 1)) | |
For some conics, regular_points() is unable to find a point on curve. | |
To calulcate the parametric representation in such cases, user need | |
to determine a point on the region and pass it using reg_point. | |
>>> c = ImplicitRegion((x, y), (x - 1/2)**2 + (y)**2 - (1/4)**2) | |
>>> c.rational_parametrization(reg_point=(3/4, 0)) | |
(0.75 - 0.5/(t**2 + 1), -0.5*t/(t**2 + 1)) | |
References | |
========== | |
- Christoph M. Hoffmann, "Conversion Methods between Parametric and | |
Implicit Curves and Surfaces", Purdue e-Pubs, 1990. Available: | |
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1827&context=cstech | |
""" | |
equation = self.equation | |
degree = self.degree | |
if degree == 1: | |
if len(self.variables) == 1: | |
return (equation,) | |
elif len(self.variables) == 2: | |
x, y = self.variables | |
y_par = list(solveset(equation, y))[0] | |
return x, y_par | |
else: | |
raise NotImplementedError() | |
point = () | |
# Finding the (n - 1) fold point of the monoid of degree | |
if degree == 2: | |
# For degree 2 curves, either a regular point or a singular point can be used. | |
if reg_point is not None: | |
# Using point provided by the user as regular point | |
point = reg_point | |
else: | |
if len(self.singular_points()) != 0: | |
point = list(self.singular_points())[0] | |
else: | |
point = self.regular_point() | |
if len(self.singular_points()) != 0: | |
singular_points = self.singular_points() | |
for spoint in singular_points: | |
syms = Tuple(*spoint).free_symbols | |
rep = dict.fromkeys(syms, 2) | |
if len(syms) != 0: | |
spoint = tuple(s.subs(rep) for s in spoint) | |
if self.multiplicity(spoint) == degree - 1: | |
point = spoint | |
break | |
if len(point) == 0: | |
# The region in not a monoid | |
raise NotImplementedError() | |
modified_eq = equation | |
# Shifting the region such that fold point moves to origin | |
for i, var in enumerate(self.variables): | |
modified_eq = modified_eq.subs(var, var + point[i]) | |
modified_eq = expand(modified_eq) | |
hn = hn_1 = 0 | |
for term in modified_eq.args: | |
if total_degree(term) == degree: | |
hn += term | |
else: | |
hn_1 += term | |
hn_1 = -1*hn_1 | |
if not isinstance(parameters, tuple): | |
parameters = (parameters,) | |
if len(self.variables) == 2: | |
parameter1 = parameters[0] | |
if parameter1 == 's': | |
# To avoid name conflict between parameters | |
s = _symbol('s_', real=True) | |
else: | |
s = _symbol('s', real=True) | |
t = _symbol(parameter1, real=True) | |
hn = hn.subs({self.variables[0]: s, self.variables[1]: t}) | |
hn_1 = hn_1.subs({self.variables[0]: s, self.variables[1]: t}) | |
x_par = (s*(hn_1/hn)).subs(s, 1) + point[0] | |
y_par = (t*(hn_1/hn)).subs(s, 1) + point[1] | |
return x_par, y_par | |
elif len(self.variables) == 3: | |
parameter1, parameter2 = parameters | |
if 'r' in parameters: | |
# To avoid name conflict between parameters | |
r = _symbol('r_', real=True) | |
else: | |
r = _symbol('r', real=True) | |
s = _symbol(parameter2, real=True) | |
t = _symbol(parameter1, real=True) | |
hn = hn.subs({self.variables[0]: r, self.variables[1]: s, self.variables[2]: t}) | |
hn_1 = hn_1.subs({self.variables[0]: r, self.variables[1]: s, self.variables[2]: t}) | |
x_par = (r*(hn_1/hn)).subs(r, 1) + point[0] | |
y_par = (s*(hn_1/hn)).subs(r, 1) + point[1] | |
z_par = (t*(hn_1/hn)).subs(r, 1) + point[2] | |
return x_par, y_par, z_par | |
raise NotImplementedError() | |
def conic_coeff(variables, equation): | |
if total_degree(equation) != 2: | |
raise ValueError() | |
x = variables[0] | |
y = variables[1] | |
equation = expand(equation) | |
a = equation.coeff(x**2) | |
b = equation.coeff(x*y) | |
c = equation.coeff(y**2) | |
d = equation.coeff(x, 1).coeff(y, 0) | |
e = equation.coeff(y, 1).coeff(x, 0) | |
f = equation.coeff(x, 0).coeff(y, 0) | |
return a, b, c, d, e, f | |