Spaces:
Sleeping
Sleeping
| """ | |
| This module provides convenient functions to transform SymPy expressions to | |
| lambda functions which can be used to calculate numerical values very fast. | |
| """ | |
| from __future__ import annotations | |
| from typing import Any | |
| import builtins | |
| import inspect | |
| import keyword | |
| import textwrap | |
| import linecache | |
| # Required despite static analysis claiming it is not used | |
| from sympy.external import import_module # noqa:F401 | |
| from sympy.utilities.exceptions import sympy_deprecation_warning | |
| from sympy.utilities.decorator import doctest_depends_on | |
| from sympy.utilities.iterables import (is_sequence, iterable, | |
| NotIterable, flatten) | |
| from sympy.utilities.misc import filldedent | |
| __doctest_requires__ = {('lambdify',): ['numpy', 'tensorflow']} | |
| # Default namespaces, letting us define translations that can't be defined | |
| # by simple variable maps, like I => 1j | |
| MATH_DEFAULT: dict[str, Any] = {} | |
| MPMATH_DEFAULT: dict[str, Any] = {} | |
| NUMPY_DEFAULT: dict[str, Any] = {"I": 1j} | |
| SCIPY_DEFAULT: dict[str, Any] = {"I": 1j} | |
| CUPY_DEFAULT: dict[str, Any] = {"I": 1j} | |
| JAX_DEFAULT: dict[str, Any] = {"I": 1j} | |
| TENSORFLOW_DEFAULT: dict[str, Any] = {} | |
| SYMPY_DEFAULT: dict[str, Any] = {} | |
| NUMEXPR_DEFAULT: dict[str, Any] = {} | |
| # These are the namespaces the lambda functions will use. | |
| # These are separate from the names above because they are modified | |
| # throughout this file, whereas the defaults should remain unmodified. | |
| MATH = MATH_DEFAULT.copy() | |
| MPMATH = MPMATH_DEFAULT.copy() | |
| NUMPY = NUMPY_DEFAULT.copy() | |
| SCIPY = SCIPY_DEFAULT.copy() | |
| CUPY = CUPY_DEFAULT.copy() | |
| JAX = JAX_DEFAULT.copy() | |
| TENSORFLOW = TENSORFLOW_DEFAULT.copy() | |
| SYMPY = SYMPY_DEFAULT.copy() | |
| NUMEXPR = NUMEXPR_DEFAULT.copy() | |
| # Mappings between SymPy and other modules function names. | |
| MATH_TRANSLATIONS = { | |
| "ceiling": "ceil", | |
| "E": "e", | |
| "ln": "log", | |
| } | |
| # NOTE: This dictionary is reused in Function._eval_evalf to allow subclasses | |
| # of Function to automatically evalf. | |
| MPMATH_TRANSLATIONS = { | |
| "Abs": "fabs", | |
| "elliptic_k": "ellipk", | |
| "elliptic_f": "ellipf", | |
| "elliptic_e": "ellipe", | |
| "elliptic_pi": "ellippi", | |
| "ceiling": "ceil", | |
| "chebyshevt": "chebyt", | |
| "chebyshevu": "chebyu", | |
| "assoc_legendre": "legenp", | |
| "E": "e", | |
| "I": "j", | |
| "ln": "log", | |
| #"lowergamma":"lower_gamma", | |
| "oo": "inf", | |
| #"uppergamma":"upper_gamma", | |
| "LambertW": "lambertw", | |
| "MutableDenseMatrix": "matrix", | |
| "ImmutableDenseMatrix": "matrix", | |
| "conjugate": "conj", | |
| "dirichlet_eta": "altzeta", | |
| "Ei": "ei", | |
| "Shi": "shi", | |
| "Chi": "chi", | |
| "Si": "si", | |
| "Ci": "ci", | |
| "RisingFactorial": "rf", | |
| "FallingFactorial": "ff", | |
| "betainc_regularized": "betainc", | |
| } | |
| NUMPY_TRANSLATIONS: dict[str, str] = { | |
| "Heaviside": "heaviside", | |
| } | |
| SCIPY_TRANSLATIONS: dict[str, str] = { | |
| "jn" : "spherical_jn", | |
| "yn" : "spherical_yn" | |
| } | |
| CUPY_TRANSLATIONS: dict[str, str] = {} | |
| JAX_TRANSLATIONS: dict[str, str] = {} | |
| TENSORFLOW_TRANSLATIONS: dict[str, str] = {} | |
| NUMEXPR_TRANSLATIONS: dict[str, str] = {} | |
| # Available modules: | |
| MODULES = { | |
| "math": (MATH, MATH_DEFAULT, MATH_TRANSLATIONS, ("from math import *",)), | |
| "mpmath": (MPMATH, MPMATH_DEFAULT, MPMATH_TRANSLATIONS, ("from mpmath import *",)), | |
| "numpy": (NUMPY, NUMPY_DEFAULT, NUMPY_TRANSLATIONS, ("import numpy; from numpy import *; from numpy.linalg import *",)), | |
| "scipy": (SCIPY, SCIPY_DEFAULT, SCIPY_TRANSLATIONS, ("import scipy; import numpy; from scipy.special import *",)), | |
| "cupy": (CUPY, CUPY_DEFAULT, CUPY_TRANSLATIONS, ("import cupy",)), | |
| "jax": (JAX, JAX_DEFAULT, JAX_TRANSLATIONS, ("import jax",)), | |
| "tensorflow": (TENSORFLOW, TENSORFLOW_DEFAULT, TENSORFLOW_TRANSLATIONS, ("import tensorflow",)), | |
| "sympy": (SYMPY, SYMPY_DEFAULT, {}, ( | |
| "from sympy.functions import *", | |
| "from sympy.matrices import *", | |
| "from sympy import Integral, pi, oo, nan, zoo, E, I",)), | |
| "numexpr" : (NUMEXPR, NUMEXPR_DEFAULT, NUMEXPR_TRANSLATIONS, | |
| ("import_module('numexpr')", )), | |
| } | |
| def _import(module, reload=False): | |
| """ | |
| Creates a global translation dictionary for module. | |
| The argument module has to be one of the following strings: "math", | |
| "mpmath", "numpy", "sympy", "tensorflow", "jax". | |
| These dictionaries map names of Python functions to their equivalent in | |
| other modules. | |
| """ | |
| try: | |
| namespace, namespace_default, translations, import_commands = MODULES[ | |
| module] | |
| except KeyError: | |
| raise NameError( | |
| "'%s' module cannot be used for lambdification" % module) | |
| # Clear namespace or exit | |
| if namespace != namespace_default: | |
| # The namespace was already generated, don't do it again if not forced. | |
| if reload: | |
| namespace.clear() | |
| namespace.update(namespace_default) | |
| else: | |
| return | |
| for import_command in import_commands: | |
| if import_command.startswith('import_module'): | |
| module = eval(import_command) | |
| if module is not None: | |
| namespace.update(module.__dict__) | |
| continue | |
| else: | |
| try: | |
| exec(import_command, {}, namespace) | |
| continue | |
| except ImportError: | |
| pass | |
| raise ImportError( | |
| "Cannot import '%s' with '%s' command" % (module, import_command)) | |
| # Add translated names to namespace | |
| for sympyname, translation in translations.items(): | |
| namespace[sympyname] = namespace[translation] | |
| # For computing the modulus of a SymPy expression we use the builtin abs | |
| # function, instead of the previously used fabs function for all | |
| # translation modules. This is because the fabs function in the math | |
| # module does not accept complex valued arguments. (see issue 9474). The | |
| # only exception, where we don't use the builtin abs function is the | |
| # mpmath translation module, because mpmath.fabs returns mpf objects in | |
| # contrast to abs(). | |
| if 'Abs' not in namespace: | |
| namespace['Abs'] = abs | |
| # Used for dynamically generated filenames that are inserted into the | |
| # linecache. | |
| _lambdify_generated_counter = 1 | |
| def lambdify(args, expr, modules=None, printer=None, use_imps=True, | |
| dummify=False, cse=False, docstring_limit=1000): | |
| """Convert a SymPy expression into a function that allows for fast | |
| numeric evaluation. | |
| .. warning:: | |
| This function uses ``exec``, and thus should not be used on | |
| unsanitized input. | |
| .. deprecated:: 1.7 | |
| Passing a set for the *args* parameter is deprecated as sets are | |
| unordered. Use an ordered iterable such as a list or tuple. | |
| Explanation | |
| =========== | |
| For example, to convert the SymPy expression ``sin(x) + cos(x)`` to an | |
| equivalent NumPy function that numerically evaluates it: | |
| >>> from sympy import sin, cos, symbols, lambdify | |
| >>> import numpy as np | |
| >>> x = symbols('x') | |
| >>> expr = sin(x) + cos(x) | |
| >>> expr | |
| sin(x) + cos(x) | |
| >>> f = lambdify(x, expr, 'numpy') | |
| >>> a = np.array([1, 2]) | |
| >>> f(a) | |
| [1.38177329 0.49315059] | |
| The primary purpose of this function is to provide a bridge from SymPy | |
| expressions to numerical libraries such as NumPy, SciPy, NumExpr, mpmath, | |
| and tensorflow. In general, SymPy functions do not work with objects from | |
| other libraries, such as NumPy arrays, and functions from numeric | |
| libraries like NumPy or mpmath do not work on SymPy expressions. | |
| ``lambdify`` bridges the two by converting a SymPy expression to an | |
| equivalent numeric function. | |
| The basic workflow with ``lambdify`` is to first create a SymPy expression | |
| representing whatever mathematical function you wish to evaluate. This | |
| should be done using only SymPy functions and expressions. Then, use | |
| ``lambdify`` to convert this to an equivalent function for numerical | |
| evaluation. For instance, above we created ``expr`` using the SymPy symbol | |
| ``x`` and SymPy functions ``sin`` and ``cos``, then converted it to an | |
| equivalent NumPy function ``f``, and called it on a NumPy array ``a``. | |
| Parameters | |
| ========== | |
| args : List[Symbol] | |
| A variable or a list of variables whose nesting represents the | |
| nesting of the arguments that will be passed to the function. | |
| Variables can be symbols, undefined functions, or matrix symbols. | |
| >>> from sympy import Eq | |
| >>> from sympy.abc import x, y, z | |
| The list of variables should match the structure of how the | |
| arguments will be passed to the function. Simply enclose the | |
| parameters as they will be passed in a list. | |
| To call a function like ``f(x)`` then ``[x]`` | |
| should be the first argument to ``lambdify``; for this | |
| case a single ``x`` can also be used: | |
| >>> f = lambdify(x, x + 1) | |
| >>> f(1) | |
| 2 | |
| >>> f = lambdify([x], x + 1) | |
| >>> f(1) | |
| 2 | |
| To call a function like ``f(x, y)`` then ``[x, y]`` will | |
| be the first argument of the ``lambdify``: | |
| >>> f = lambdify([x, y], x + y) | |
| >>> f(1, 1) | |
| 2 | |
| To call a function with a single 3-element tuple like | |
| ``f((x, y, z))`` then ``[(x, y, z)]`` will be the first | |
| argument of the ``lambdify``: | |
| >>> f = lambdify([(x, y, z)], Eq(z**2, x**2 + y**2)) | |
| >>> f((3, 4, 5)) | |
| True | |
| If two args will be passed and the first is a scalar but | |
| the second is a tuple with two arguments then the items | |
| in the list should match that structure: | |
| >>> f = lambdify([x, (y, z)], x + y + z) | |
| >>> f(1, (2, 3)) | |
| 6 | |
| expr : Expr | |
| An expression, list of expressions, or matrix to be evaluated. | |
| Lists may be nested. | |
| If the expression is a list, the output will also be a list. | |
| >>> f = lambdify(x, [x, [x + 1, x + 2]]) | |
| >>> f(1) | |
| [1, [2, 3]] | |
| If it is a matrix, an array will be returned (for the NumPy module). | |
| >>> from sympy import Matrix | |
| >>> f = lambdify(x, Matrix([x, x + 1])) | |
| >>> f(1) | |
| [[1] | |
| [2]] | |
| Note that the argument order here (variables then expression) is used | |
| to emulate the Python ``lambda`` keyword. ``lambdify(x, expr)`` works | |
| (roughly) like ``lambda x: expr`` | |
| (see :ref:`lambdify-how-it-works` below). | |
| modules : str, optional | |
| Specifies the numeric library to use. | |
| If not specified, *modules* defaults to: | |
| - ``["scipy", "numpy"]`` if SciPy is installed | |
| - ``["numpy"]`` if only NumPy is installed | |
| - ``["math", "mpmath", "sympy"]`` if neither is installed. | |
| That is, SymPy functions are replaced as far as possible by | |
| either ``scipy`` or ``numpy`` functions if available, and Python's | |
| standard library ``math``, or ``mpmath`` functions otherwise. | |
| *modules* can be one of the following types: | |
| - The strings ``"math"``, ``"mpmath"``, ``"numpy"``, ``"numexpr"``, | |
| ``"scipy"``, ``"sympy"``, or ``"tensorflow"`` or ``"jax"``. This uses the | |
| corresponding printer and namespace mapping for that module. | |
| - A module (e.g., ``math``). This uses the global namespace of the | |
| module. If the module is one of the above known modules, it will | |
| also use the corresponding printer and namespace mapping | |
| (i.e., ``modules=numpy`` is equivalent to ``modules="numpy"``). | |
| - A dictionary that maps names of SymPy functions to arbitrary | |
| functions | |
| (e.g., ``{'sin': custom_sin}``). | |
| - A list that contains a mix of the arguments above, with higher | |
| priority given to entries appearing first | |
| (e.g., to use the NumPy module but override the ``sin`` function | |
| with a custom version, you can use | |
| ``[{'sin': custom_sin}, 'numpy']``). | |
| dummify : bool, optional | |
| Whether or not the variables in the provided expression that are not | |
| valid Python identifiers are substituted with dummy symbols. | |
| This allows for undefined functions like ``Function('f')(t)`` to be | |
| supplied as arguments. By default, the variables are only dummified | |
| if they are not valid Python identifiers. | |
| Set ``dummify=True`` to replace all arguments with dummy symbols | |
| (if ``args`` is not a string) - for example, to ensure that the | |
| arguments do not redefine any built-in names. | |
| cse : bool, or callable, optional | |
| Large expressions can be computed more efficiently when | |
| common subexpressions are identified and precomputed before | |
| being used multiple time. Finding the subexpressions will make | |
| creation of the 'lambdify' function slower, however. | |
| When ``True``, ``sympy.simplify.cse`` is used, otherwise (the default) | |
| the user may pass a function matching the ``cse`` signature. | |
| docstring_limit : int or None | |
| When lambdifying large expressions, a significant proportion of the time | |
| spent inside ``lambdify`` is spent producing a string representation of | |
| the expression for use in the automatically generated docstring of the | |
| returned function. For expressions containing hundreds or more nodes the | |
| resulting docstring often becomes so long and dense that it is difficult | |
| to read. To reduce the runtime of lambdify, the rendering of the full | |
| expression inside the docstring can be disabled. | |
| When ``None``, the full expression is rendered in the docstring. When | |
| ``0`` or a negative ``int``, an ellipsis is rendering in the docstring | |
| instead of the expression. When a strictly positive ``int``, if the | |
| number of nodes in the expression exceeds ``docstring_limit`` an | |
| ellipsis is rendered in the docstring, otherwise a string representation | |
| of the expression is rendered as normal. The default is ``1000``. | |
| Examples | |
| ======== | |
| >>> from sympy.utilities.lambdify import implemented_function | |
| >>> from sympy import sqrt, sin, Matrix | |
| >>> from sympy import Function | |
| >>> from sympy.abc import w, x, y, z | |
| >>> f = lambdify(x, x**2) | |
| >>> f(2) | |
| 4 | |
| >>> f = lambdify((x, y, z), [z, y, x]) | |
| >>> f(1,2,3) | |
| [3, 2, 1] | |
| >>> f = lambdify(x, sqrt(x)) | |
| >>> f(4) | |
| 2.0 | |
| >>> f = lambdify((x, y), sin(x*y)**2) | |
| >>> f(0, 5) | |
| 0.0 | |
| >>> row = lambdify((x, y), Matrix((x, x + y)).T, modules='sympy') | |
| >>> row(1, 2) | |
| Matrix([[1, 3]]) | |
| ``lambdify`` can be used to translate SymPy expressions into mpmath | |
| functions. This may be preferable to using ``evalf`` (which uses mpmath on | |
| the backend) in some cases. | |
| >>> f = lambdify(x, sin(x), 'mpmath') | |
| >>> f(1) | |
| 0.8414709848078965 | |
| Tuple arguments are handled and the lambdified function should | |
| be called with the same type of arguments as were used to create | |
| the function: | |
| >>> f = lambdify((x, (y, z)), x + y) | |
| >>> f(1, (2, 4)) | |
| 3 | |
| The ``flatten`` function can be used to always work with flattened | |
| arguments: | |
| >>> from sympy.utilities.iterables import flatten | |
| >>> args = w, (x, (y, z)) | |
| >>> vals = 1, (2, (3, 4)) | |
| >>> f = lambdify(flatten(args), w + x + y + z) | |
| >>> f(*flatten(vals)) | |
| 10 | |
| Functions present in ``expr`` can also carry their own numerical | |
| implementations, in a callable attached to the ``_imp_`` attribute. This | |
| can be used with undefined functions using the ``implemented_function`` | |
| factory: | |
| >>> f = implemented_function(Function('f'), lambda x: x+1) | |
| >>> func = lambdify(x, f(x)) | |
| >>> func(4) | |
| 5 | |
| ``lambdify`` always prefers ``_imp_`` implementations to implementations | |
| in other namespaces, unless the ``use_imps`` input parameter is False. | |
| Usage with Tensorflow: | |
| >>> import tensorflow as tf | |
| >>> from sympy import Max, sin, lambdify | |
| >>> from sympy.abc import x | |
| >>> f = Max(x, sin(x)) | |
| >>> func = lambdify(x, f, 'tensorflow') | |
| After tensorflow v2, eager execution is enabled by default. | |
| If you want to get the compatible result across tensorflow v1 and v2 | |
| as same as this tutorial, run this line. | |
| >>> tf.compat.v1.enable_eager_execution() | |
| If you have eager execution enabled, you can get the result out | |
| immediately as you can use numpy. | |
| If you pass tensorflow objects, you may get an ``EagerTensor`` | |
| object instead of value. | |
| >>> result = func(tf.constant(1.0)) | |
| >>> print(result) | |
| tf.Tensor(1.0, shape=(), dtype=float32) | |
| >>> print(result.__class__) | |
| <class 'tensorflow.python.framework.ops.EagerTensor'> | |
| You can use ``.numpy()`` to get the numpy value of the tensor. | |
| >>> result.numpy() | |
| 1.0 | |
| >>> var = tf.Variable(2.0) | |
| >>> result = func(var) # also works for tf.Variable and tf.Placeholder | |
| >>> result.numpy() | |
| 2.0 | |
| And it works with any shape array. | |
| >>> tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]]) | |
| >>> result = func(tensor) | |
| >>> result.numpy() | |
| [[1. 2.] | |
| [3. 4.]] | |
| Notes | |
| ===== | |
| - For functions involving large array calculations, numexpr can provide a | |
| significant speedup over numpy. Please note that the available functions | |
| for numexpr are more limited than numpy but can be expanded with | |
| ``implemented_function`` and user defined subclasses of Function. If | |
| specified, numexpr may be the only option in modules. The official list | |
| of numexpr functions can be found at: | |
| https://numexpr.readthedocs.io/en/latest/user_guide.html#supported-functions | |
| - In the above examples, the generated functions can accept scalar | |
| values or numpy arrays as arguments. However, in some cases | |
| the generated function relies on the input being a numpy array: | |
| >>> import numpy | |
| >>> from sympy import Piecewise | |
| >>> from sympy.testing.pytest import ignore_warnings | |
| >>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "numpy") | |
| >>> with ignore_warnings(RuntimeWarning): | |
| ... f(numpy.array([-1, 0, 1, 2])) | |
| [-1. 0. 1. 0.5] | |
| >>> f(0) | |
| Traceback (most recent call last): | |
| ... | |
| ZeroDivisionError: division by zero | |
| In such cases, the input should be wrapped in a numpy array: | |
| >>> with ignore_warnings(RuntimeWarning): | |
| ... float(f(numpy.array([0]))) | |
| 0.0 | |
| Or if numpy functionality is not required another module can be used: | |
| >>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "math") | |
| >>> f(0) | |
| 0 | |
| .. _lambdify-how-it-works: | |
| How it works | |
| ============ | |
| When using this function, it helps a great deal to have an idea of what it | |
| is doing. At its core, lambdify is nothing more than a namespace | |
| translation, on top of a special printer that makes some corner cases work | |
| properly. | |
| To understand lambdify, first we must properly understand how Python | |
| namespaces work. Say we had two files. One called ``sin_cos_sympy.py``, | |
| with | |
| .. code:: python | |
| # sin_cos_sympy.py | |
| from sympy.functions.elementary.trigonometric import (cos, sin) | |
| def sin_cos(x): | |
| return sin(x) + cos(x) | |
| and one called ``sin_cos_numpy.py`` with | |
| .. code:: python | |
| # sin_cos_numpy.py | |
| from numpy import sin, cos | |
| def sin_cos(x): | |
| return sin(x) + cos(x) | |
| The two files define an identical function ``sin_cos``. However, in the | |
| first file, ``sin`` and ``cos`` are defined as the SymPy ``sin`` and | |
| ``cos``. In the second, they are defined as the NumPy versions. | |
| If we were to import the first file and use the ``sin_cos`` function, we | |
| would get something like | |
| >>> from sin_cos_sympy import sin_cos # doctest: +SKIP | |
| >>> sin_cos(1) # doctest: +SKIP | |
| cos(1) + sin(1) | |
| On the other hand, if we imported ``sin_cos`` from the second file, we | |
| would get | |
| >>> from sin_cos_numpy import sin_cos # doctest: +SKIP | |
| >>> sin_cos(1) # doctest: +SKIP | |
| 1.38177329068 | |
| In the first case we got a symbolic output, because it used the symbolic | |
| ``sin`` and ``cos`` functions from SymPy. In the second, we got a numeric | |
| result, because ``sin_cos`` used the numeric ``sin`` and ``cos`` functions | |
| from NumPy. But notice that the versions of ``sin`` and ``cos`` that were | |
| used was not inherent to the ``sin_cos`` function definition. Both | |
| ``sin_cos`` definitions are exactly the same. Rather, it was based on the | |
| names defined at the module where the ``sin_cos`` function was defined. | |
| The key point here is that when function in Python references a name that | |
| is not defined in the function, that name is looked up in the "global" | |
| namespace of the module where that function is defined. | |
| Now, in Python, we can emulate this behavior without actually writing a | |
| file to disk using the ``exec`` function. ``exec`` takes a string | |
| containing a block of Python code, and a dictionary that should contain | |
| the global variables of the module. It then executes the code "in" that | |
| dictionary, as if it were the module globals. The following is equivalent | |
| to the ``sin_cos`` defined in ``sin_cos_sympy.py``: | |
| >>> import sympy | |
| >>> module_dictionary = {'sin': sympy.sin, 'cos': sympy.cos} | |
| >>> exec(''' | |
| ... def sin_cos(x): | |
| ... return sin(x) + cos(x) | |
| ... ''', module_dictionary) | |
| >>> sin_cos = module_dictionary['sin_cos'] | |
| >>> sin_cos(1) | |
| cos(1) + sin(1) | |
| and similarly with ``sin_cos_numpy``: | |
| >>> import numpy | |
| >>> module_dictionary = {'sin': numpy.sin, 'cos': numpy.cos} | |
| >>> exec(''' | |
| ... def sin_cos(x): | |
| ... return sin(x) + cos(x) | |
| ... ''', module_dictionary) | |
| >>> sin_cos = module_dictionary['sin_cos'] | |
| >>> sin_cos(1) | |
| 1.38177329068 | |
| So now we can get an idea of how ``lambdify`` works. The name "lambdify" | |
| comes from the fact that we can think of something like ``lambdify(x, | |
| sin(x) + cos(x), 'numpy')`` as ``lambda x: sin(x) + cos(x)``, where | |
| ``sin`` and ``cos`` come from the ``numpy`` namespace. This is also why | |
| the symbols argument is first in ``lambdify``, as opposed to most SymPy | |
| functions where it comes after the expression: to better mimic the | |
| ``lambda`` keyword. | |
| ``lambdify`` takes the input expression (like ``sin(x) + cos(x)``) and | |
| 1. Converts it to a string | |
| 2. Creates a module globals dictionary based on the modules that are | |
| passed in (by default, it uses the NumPy module) | |
| 3. Creates the string ``"def func({vars}): return {expr}"``, where ``{vars}`` is the | |
| list of variables separated by commas, and ``{expr}`` is the string | |
| created in step 1., then ``exec``s that string with the module globals | |
| namespace and returns ``func``. | |
| In fact, functions returned by ``lambdify`` support inspection. So you can | |
| see exactly how they are defined by using ``inspect.getsource``, or ``??`` if you | |
| are using IPython or the Jupyter notebook. | |
| >>> f = lambdify(x, sin(x) + cos(x)) | |
| >>> import inspect | |
| >>> print(inspect.getsource(f)) | |
| def _lambdifygenerated(x): | |
| return sin(x) + cos(x) | |
| This shows us the source code of the function, but not the namespace it | |
| was defined in. We can inspect that by looking at the ``__globals__`` | |
| attribute of ``f``: | |
| >>> f.__globals__['sin'] | |
| <ufunc 'sin'> | |
| >>> f.__globals__['cos'] | |
| <ufunc 'cos'> | |
| >>> f.__globals__['sin'] is numpy.sin | |
| True | |
| This shows us that ``sin`` and ``cos`` in the namespace of ``f`` will be | |
| ``numpy.sin`` and ``numpy.cos``. | |
| Note that there are some convenience layers in each of these steps, but at | |
| the core, this is how ``lambdify`` works. Step 1 is done using the | |
| ``LambdaPrinter`` printers defined in the printing module (see | |
| :mod:`sympy.printing.lambdarepr`). This allows different SymPy expressions | |
| to define how they should be converted to a string for different modules. | |
| You can change which printer ``lambdify`` uses by passing a custom printer | |
| in to the ``printer`` argument. | |
| Step 2 is augmented by certain translations. There are default | |
| translations for each module, but you can provide your own by passing a | |
| list to the ``modules`` argument. For instance, | |
| >>> def mysin(x): | |
| ... print('taking the sin of', x) | |
| ... return numpy.sin(x) | |
| ... | |
| >>> f = lambdify(x, sin(x), [{'sin': mysin}, 'numpy']) | |
| >>> f(1) | |
| taking the sin of 1 | |
| 0.8414709848078965 | |
| The globals dictionary is generated from the list by merging the | |
| dictionary ``{'sin': mysin}`` and the module dictionary for NumPy. The | |
| merging is done so that earlier items take precedence, which is why | |
| ``mysin`` is used above instead of ``numpy.sin``. | |
| If you want to modify the way ``lambdify`` works for a given function, it | |
| is usually easiest to do so by modifying the globals dictionary as such. | |
| In more complicated cases, it may be necessary to create and pass in a | |
| custom printer. | |
| Finally, step 3 is augmented with certain convenience operations, such as | |
| the addition of a docstring. | |
| Understanding how ``lambdify`` works can make it easier to avoid certain | |
| gotchas when using it. For instance, a common mistake is to create a | |
| lambdified function for one module (say, NumPy), and pass it objects from | |
| another (say, a SymPy expression). | |
| For instance, say we create | |
| >>> from sympy.abc import x | |
| >>> f = lambdify(x, x + 1, 'numpy') | |
| Now if we pass in a NumPy array, we get that array plus 1 | |
| >>> import numpy | |
| >>> a = numpy.array([1, 2]) | |
| >>> f(a) | |
| [2 3] | |
| But what happens if you make the mistake of passing in a SymPy expression | |
| instead of a NumPy array: | |
| >>> f(x + 1) | |
| x + 2 | |
| This worked, but it was only by accident. Now take a different lambdified | |
| function: | |
| >>> from sympy import sin | |
| >>> g = lambdify(x, x + sin(x), 'numpy') | |
| This works as expected on NumPy arrays: | |
| >>> g(a) | |
| [1.84147098 2.90929743] | |
| But if we try to pass in a SymPy expression, it fails | |
| >>> g(x + 1) | |
| Traceback (most recent call last): | |
| ... | |
| TypeError: loop of ufunc does not support argument 0 of type Add which has | |
| no callable sin method | |
| Now, let's look at what happened. The reason this fails is that ``g`` | |
| calls ``numpy.sin`` on the input expression, and ``numpy.sin`` does not | |
| know how to operate on a SymPy object. **As a general rule, NumPy | |
| functions do not know how to operate on SymPy expressions, and SymPy | |
| functions do not know how to operate on NumPy arrays. This is why lambdify | |
| exists: to provide a bridge between SymPy and NumPy.** | |
| However, why is it that ``f`` did work? That's because ``f`` does not call | |
| any functions, it only adds 1. So the resulting function that is created, | |
| ``def _lambdifygenerated(x): return x + 1`` does not depend on the globals | |
| namespace it is defined in. Thus it works, but only by accident. A future | |
| version of ``lambdify`` may remove this behavior. | |
| Be aware that certain implementation details described here may change in | |
| future versions of SymPy. The API of passing in custom modules and | |
| printers will not change, but the details of how a lambda function is | |
| created may change. However, the basic idea will remain the same, and | |
| understanding it will be helpful to understanding the behavior of | |
| lambdify. | |
| **In general: you should create lambdified functions for one module (say, | |
| NumPy), and only pass it input types that are compatible with that module | |
| (say, NumPy arrays).** Remember that by default, if the ``module`` | |
| argument is not provided, ``lambdify`` creates functions using the NumPy | |
| and SciPy namespaces. | |
| """ | |
| from sympy.core.symbol import Symbol | |
| from sympy.core.expr import Expr | |
| # If the user hasn't specified any modules, use what is available. | |
| if modules is None: | |
| try: | |
| _import("scipy") | |
| except ImportError: | |
| try: | |
| _import("numpy") | |
| except ImportError: | |
| # Use either numpy (if available) or python.math where possible. | |
| # XXX: This leads to different behaviour on different systems and | |
| # might be the reason for irreproducible errors. | |
| modules = ["math", "mpmath", "sympy"] | |
| else: | |
| modules = ["numpy"] | |
| else: | |
| modules = ["numpy", "scipy"] | |
| # Get the needed namespaces. | |
| namespaces = [] | |
| # First find any function implementations | |
| if use_imps: | |
| namespaces.append(_imp_namespace(expr)) | |
| # Check for dict before iterating | |
| if isinstance(modules, (dict, str)) or not hasattr(modules, '__iter__'): | |
| namespaces.append(modules) | |
| else: | |
| # consistency check | |
| if _module_present('numexpr', modules) and len(modules) > 1: | |
| raise TypeError("numexpr must be the only item in 'modules'") | |
| namespaces += list(modules) | |
| # fill namespace with first having highest priority | |
| namespace = {} | |
| for m in namespaces[::-1]: | |
| buf = _get_namespace(m) | |
| namespace.update(buf) | |
| if hasattr(expr, "atoms"): | |
| #Try if you can extract symbols from the expression. | |
| #Move on if expr.atoms in not implemented. | |
| syms = expr.atoms(Symbol) | |
| for term in syms: | |
| namespace.update({str(term): term}) | |
| if printer is None: | |
| if _module_present('mpmath', namespaces): | |
| from sympy.printing.pycode import MpmathPrinter as Printer # type: ignore | |
| elif _module_present('scipy', namespaces): | |
| from sympy.printing.numpy import SciPyPrinter as Printer # type: ignore | |
| elif _module_present('numpy', namespaces): | |
| from sympy.printing.numpy import NumPyPrinter as Printer # type: ignore | |
| elif _module_present('cupy', namespaces): | |
| from sympy.printing.numpy import CuPyPrinter as Printer # type: ignore | |
| elif _module_present('jax', namespaces): | |
| from sympy.printing.numpy import JaxPrinter as Printer # type: ignore | |
| elif _module_present('numexpr', namespaces): | |
| from sympy.printing.lambdarepr import NumExprPrinter as Printer # type: ignore | |
| elif _module_present('tensorflow', namespaces): | |
| from sympy.printing.tensorflow import TensorflowPrinter as Printer # type: ignore | |
| elif _module_present('sympy', namespaces): | |
| from sympy.printing.pycode import SymPyPrinter as Printer # type: ignore | |
| else: | |
| from sympy.printing.pycode import PythonCodePrinter as Printer # type: ignore | |
| user_functions = {} | |
| for m in namespaces[::-1]: | |
| if isinstance(m, dict): | |
| for k in m: | |
| user_functions[k] = k | |
| printer = Printer({'fully_qualified_modules': False, 'inline': True, | |
| 'allow_unknown_functions': True, | |
| 'user_functions': user_functions}) | |
| if isinstance(args, set): | |
| sympy_deprecation_warning( | |
| """ | |
| Passing the function arguments to lambdify() as a set is deprecated. This | |
| leads to unpredictable results since sets are unordered. Instead, use a list | |
| or tuple for the function arguments. | |
| """, | |
| deprecated_since_version="1.6.3", | |
| active_deprecations_target="deprecated-lambdify-arguments-set", | |
| ) | |
| # Get the names of the args, for creating a docstring | |
| iterable_args = (args,) if isinstance(args, Expr) else args | |
| names = [] | |
| # Grab the callers frame, for getting the names by inspection (if needed) | |
| callers_local_vars = inspect.currentframe().f_back.f_locals.items() # type: ignore | |
| for n, var in enumerate(iterable_args): | |
| if hasattr(var, 'name'): | |
| names.append(var.name) | |
| else: | |
| # It's an iterable. Try to get name by inspection of calling frame. | |
| name_list = [var_name for var_name, var_val in callers_local_vars | |
| if var_val is var] | |
| if len(name_list) == 1: | |
| names.append(name_list[0]) | |
| else: | |
| # Cannot infer name with certainty. arg_# will have to do. | |
| names.append('arg_' + str(n)) | |
| # Create the function definition code and execute it | |
| funcname = '_lambdifygenerated' | |
| if _module_present('tensorflow', namespaces): | |
| funcprinter = _TensorflowEvaluatorPrinter(printer, dummify) | |
| else: | |
| funcprinter = _EvaluatorPrinter(printer, dummify) | |
| if cse == True: | |
| from sympy.simplify.cse_main import cse as _cse | |
| cses, _expr = _cse(expr, list=False) | |
| elif callable(cse): | |
| cses, _expr = cse(expr) | |
| else: | |
| cses, _expr = (), expr | |
| funcstr = funcprinter.doprint(funcname, iterable_args, _expr, cses=cses) | |
| # Collect the module imports from the code printers. | |
| imp_mod_lines = [] | |
| for mod, keys in (getattr(printer, 'module_imports', None) or {}).items(): | |
| for k in keys: | |
| if k not in namespace: | |
| ln = "from %s import %s" % (mod, k) | |
| try: | |
| exec(ln, {}, namespace) | |
| except ImportError: | |
| # Tensorflow 2.0 has issues with importing a specific | |
| # function from its submodule. | |
| # https://github.com/tensorflow/tensorflow/issues/33022 | |
| ln = "%s = %s.%s" % (k, mod, k) | |
| exec(ln, {}, namespace) | |
| imp_mod_lines.append(ln) | |
| # Provide lambda expression with builtins, and compatible implementation of range | |
| namespace.update({'builtins':builtins, 'range':range}) | |
| funclocals = {} | |
| global _lambdify_generated_counter | |
| filename = '<lambdifygenerated-%s>' % _lambdify_generated_counter | |
| _lambdify_generated_counter += 1 | |
| c = compile(funcstr, filename, 'exec') | |
| exec(c, namespace, funclocals) | |
| # mtime has to be None or else linecache.checkcache will remove it | |
| linecache.cache[filename] = (len(funcstr), None, funcstr.splitlines(True), filename) # type: ignore | |
| func = funclocals[funcname] | |
| # Apply the docstring | |
| sig = "func({})".format(", ".join(str(i) for i in names)) | |
| sig = textwrap.fill(sig, subsequent_indent=' '*8) | |
| if _too_large_for_docstring(expr, docstring_limit): | |
| expr_str = "EXPRESSION REDACTED DUE TO LENGTH, (see lambdify's `docstring_limit`)" | |
| src_str = "SOURCE CODE REDACTED DUE TO LENGTH, (see lambdify's `docstring_limit`)" | |
| else: | |
| expr_str = str(expr) | |
| if len(expr_str) > 78: | |
| expr_str = textwrap.wrap(expr_str, 75)[0] + '...' | |
| src_str = funcstr | |
| func.__doc__ = ( | |
| "Created with lambdify. Signature:\n\n" | |
| "{sig}\n\n" | |
| "Expression:\n\n" | |
| "{expr}\n\n" | |
| "Source code:\n\n" | |
| "{src}\n\n" | |
| "Imported modules:\n\n" | |
| "{imp_mods}" | |
| ).format(sig=sig, expr=expr_str, src=src_str, imp_mods='\n'.join(imp_mod_lines)) | |
| return func | |
| def _module_present(modname, modlist): | |
| if modname in modlist: | |
| return True | |
| for m in modlist: | |
| if hasattr(m, '__name__') and m.__name__ == modname: | |
| return True | |
| return False | |
| def _get_namespace(m): | |
| """ | |
| This is used by _lambdify to parse its arguments. | |
| """ | |
| if isinstance(m, str): | |
| _import(m) | |
| return MODULES[m][0] | |
| elif isinstance(m, dict): | |
| return m | |
| elif hasattr(m, "__dict__"): | |
| return m.__dict__ | |
| else: | |
| raise TypeError("Argument must be either a string, dict or module but it is: %s" % m) | |
| def _recursive_to_string(doprint, arg): | |
| """Functions in lambdify accept both SymPy types and non-SymPy types such as python | |
| lists and tuples. This method ensures that we only call the doprint method of the | |
| printer with SymPy types (so that the printer safely can use SymPy-methods).""" | |
| from sympy.matrices.matrixbase import MatrixBase | |
| from sympy.core.basic import Basic | |
| if isinstance(arg, (Basic, MatrixBase)): | |
| return doprint(arg) | |
| elif iterable(arg): | |
| if isinstance(arg, list): | |
| left, right = "[", "]" | |
| elif isinstance(arg, tuple): | |
| left, right = "(", ",)" | |
| if not arg: | |
| return "()" | |
| else: | |
| raise NotImplementedError("unhandled type: %s, %s" % (type(arg), arg)) | |
| return left +', '.join(_recursive_to_string(doprint, e) for e in arg) + right | |
| elif isinstance(arg, str): | |
| return arg | |
| else: | |
| return doprint(arg) | |
| def lambdastr(args, expr, printer=None, dummify=None): | |
| """ | |
| Returns a string that can be evaluated to a lambda function. | |
| Examples | |
| ======== | |
| >>> from sympy.abc import x, y, z | |
| >>> from sympy.utilities.lambdify import lambdastr | |
| >>> lambdastr(x, x**2) | |
| 'lambda x: (x**2)' | |
| >>> lambdastr((x,y,z), [z,y,x]) | |
| 'lambda x,y,z: ([z, y, x])' | |
| Although tuples may not appear as arguments to lambda in Python 3, | |
| lambdastr will create a lambda function that will unpack the original | |
| arguments so that nested arguments can be handled: | |
| >>> lambdastr((x, (y, z)), x + y) | |
| 'lambda _0,_1: (lambda x,y,z: (x + y))(_0,_1[0],_1[1])' | |
| """ | |
| # Transforming everything to strings. | |
| from sympy.matrices import DeferredVector | |
| from sympy.core.basic import Basic | |
| from sympy.core.function import (Derivative, Function) | |
| from sympy.core.symbol import (Dummy, Symbol) | |
| from sympy.core.sympify import sympify | |
| if printer is not None: | |
| if inspect.isfunction(printer): | |
| lambdarepr = printer | |
| else: | |
| if inspect.isclass(printer): | |
| lambdarepr = lambda expr: printer().doprint(expr) | |
| else: | |
| lambdarepr = lambda expr: printer.doprint(expr) | |
| else: | |
| #XXX: This has to be done here because of circular imports | |
| from sympy.printing.lambdarepr import lambdarepr | |
| def sub_args(args, dummies_dict): | |
| if isinstance(args, str): | |
| return args | |
| elif isinstance(args, DeferredVector): | |
| return str(args) | |
| elif iterable(args): | |
| dummies = flatten([sub_args(a, dummies_dict) for a in args]) | |
| return ",".join(str(a) for a in dummies) | |
| else: | |
| # replace these with Dummy symbols | |
| if isinstance(args, (Function, Symbol, Derivative)): | |
| dummies = Dummy() | |
| dummies_dict.update({args : dummies}) | |
| return str(dummies) | |
| else: | |
| return str(args) | |
| def sub_expr(expr, dummies_dict): | |
| expr = sympify(expr) | |
| # dict/tuple are sympified to Basic | |
| if isinstance(expr, Basic): | |
| expr = expr.xreplace(dummies_dict) | |
| # list is not sympified to Basic | |
| elif isinstance(expr, list): | |
| expr = [sub_expr(a, dummies_dict) for a in expr] | |
| return expr | |
| # Transform args | |
| def isiter(l): | |
| return iterable(l, exclude=(str, DeferredVector, NotIterable)) | |
| def flat_indexes(iterable): | |
| n = 0 | |
| for el in iterable: | |
| if isiter(el): | |
| for ndeep in flat_indexes(el): | |
| yield (n,) + ndeep | |
| else: | |
| yield (n,) | |
| n += 1 | |
| if dummify is None: | |
| dummify = any(isinstance(a, Basic) and | |
| a.atoms(Function, Derivative) for a in ( | |
| args if isiter(args) else [args])) | |
| if isiter(args) and any(isiter(i) for i in args): | |
| dum_args = [str(Dummy(str(i))) for i in range(len(args))] | |
| indexed_args = ','.join([ | |
| dum_args[ind[0]] + ''.join(["[%s]" % k for k in ind[1:]]) | |
| for ind in flat_indexes(args)]) | |
| lstr = lambdastr(flatten(args), expr, printer=printer, dummify=dummify) | |
| return 'lambda %s: (%s)(%s)' % (','.join(dum_args), lstr, indexed_args) | |
| dummies_dict = {} | |
| if dummify: | |
| args = sub_args(args, dummies_dict) | |
| else: | |
| if isinstance(args, str): | |
| pass | |
| elif iterable(args, exclude=DeferredVector): | |
| args = ",".join(str(a) for a in args) | |
| # Transform expr | |
| if dummify: | |
| if isinstance(expr, str): | |
| pass | |
| else: | |
| expr = sub_expr(expr, dummies_dict) | |
| expr = _recursive_to_string(lambdarepr, expr) | |
| return "lambda %s: (%s)" % (args, expr) | |
| class _EvaluatorPrinter: | |
| def __init__(self, printer=None, dummify=False): | |
| self._dummify = dummify | |
| #XXX: This has to be done here because of circular imports | |
| from sympy.printing.lambdarepr import LambdaPrinter | |
| if printer is None: | |
| printer = LambdaPrinter() | |
| if inspect.isfunction(printer): | |
| self._exprrepr = printer | |
| else: | |
| if inspect.isclass(printer): | |
| printer = printer() | |
| self._exprrepr = printer.doprint | |
| #if hasattr(printer, '_print_Symbol'): | |
| # symbolrepr = printer._print_Symbol | |
| #if hasattr(printer, '_print_Dummy'): | |
| # dummyrepr = printer._print_Dummy | |
| # Used to print the generated function arguments in a standard way | |
| self._argrepr = LambdaPrinter().doprint | |
| def doprint(self, funcname, args, expr, *, cses=()): | |
| """ | |
| Returns the function definition code as a string. | |
| """ | |
| from sympy.core.symbol import Dummy | |
| funcbody = [] | |
| if not iterable(args): | |
| args = [args] | |
| if cses: | |
| subvars, subexprs = zip(*cses) | |
| exprs = [expr] + list(subexprs) | |
| argstrs, exprs = self._preprocess(args, exprs) | |
| expr, subexprs = exprs[0], exprs[1:] | |
| cses = zip(subvars, subexprs) | |
| else: | |
| argstrs, expr = self._preprocess(args, expr) | |
| # Generate argument unpacking and final argument list | |
| funcargs = [] | |
| unpackings = [] | |
| for argstr in argstrs: | |
| if iterable(argstr): | |
| funcargs.append(self._argrepr(Dummy())) | |
| unpackings.extend(self._print_unpacking(argstr, funcargs[-1])) | |
| else: | |
| funcargs.append(argstr) | |
| funcsig = 'def {}({}):'.format(funcname, ', '.join(funcargs)) | |
| # Wrap input arguments before unpacking | |
| funcbody.extend(self._print_funcargwrapping(funcargs)) | |
| funcbody.extend(unpackings) | |
| for s, e in cses: | |
| if e is None: | |
| funcbody.append('del {}'.format(self._exprrepr(s))) | |
| else: | |
| funcbody.append('{} = {}'.format(self._exprrepr(s), self._exprrepr(e))) | |
| str_expr = _recursive_to_string(self._exprrepr, expr) | |
| if '\n' in str_expr: | |
| str_expr = '({})'.format(str_expr) | |
| funcbody.append('return {}'.format(str_expr)) | |
| funclines = [funcsig] | |
| funclines.extend([' ' + line for line in funcbody]) | |
| return '\n'.join(funclines) + '\n' | |
| def _is_safe_ident(cls, ident): | |
| return isinstance(ident, str) and ident.isidentifier() \ | |
| and not keyword.iskeyword(ident) | |
| def _preprocess(self, args, expr): | |
| """Preprocess args, expr to replace arguments that do not map | |
| to valid Python identifiers. | |
| Returns string form of args, and updated expr. | |
| """ | |
| from sympy.core.basic import Basic | |
| from sympy.core.sorting import ordered | |
| from sympy.core.function import (Derivative, Function) | |
| from sympy.core.symbol import Dummy, uniquely_named_symbol | |
| from sympy.matrices import DeferredVector | |
| from sympy.core.expr import Expr | |
| # Args of type Dummy can cause name collisions with args | |
| # of type Symbol. Force dummify of everything in this | |
| # situation. | |
| dummify = self._dummify or any( | |
| isinstance(arg, Dummy) for arg in flatten(args)) | |
| argstrs = [None]*len(args) | |
| for arg, i in reversed(list(ordered(zip(args, range(len(args)))))): | |
| if iterable(arg): | |
| s, expr = self._preprocess(arg, expr) | |
| elif isinstance(arg, DeferredVector): | |
| s = str(arg) | |
| elif isinstance(arg, Basic) and arg.is_symbol: | |
| s = str(arg) | |
| if dummify or not self._is_safe_ident(s): | |
| dummy = Dummy() | |
| if isinstance(expr, Expr): | |
| dummy = uniquely_named_symbol( | |
| dummy.name, expr, modify=lambda s: '_' + s) | |
| s = self._argrepr(dummy) | |
| expr = self._subexpr(expr, {arg: dummy}) | |
| elif dummify or isinstance(arg, (Function, Derivative)): | |
| dummy = Dummy() | |
| s = self._argrepr(dummy) | |
| expr = self._subexpr(expr, {arg: dummy}) | |
| else: | |
| s = str(arg) | |
| argstrs[i] = s | |
| return argstrs, expr | |
| def _subexpr(self, expr, dummies_dict): | |
| from sympy.matrices import DeferredVector | |
| from sympy.core.sympify import sympify | |
| expr = sympify(expr) | |
| xreplace = getattr(expr, 'xreplace', None) | |
| if xreplace is not None: | |
| expr = xreplace(dummies_dict) | |
| else: | |
| if isinstance(expr, DeferredVector): | |
| pass | |
| elif isinstance(expr, dict): | |
| k = [self._subexpr(sympify(a), dummies_dict) for a in expr.keys()] | |
| v = [self._subexpr(sympify(a), dummies_dict) for a in expr.values()] | |
| expr = dict(zip(k, v)) | |
| elif isinstance(expr, tuple): | |
| expr = tuple(self._subexpr(sympify(a), dummies_dict) for a in expr) | |
| elif isinstance(expr, list): | |
| expr = [self._subexpr(sympify(a), dummies_dict) for a in expr] | |
| return expr | |
| def _print_funcargwrapping(self, args): | |
| """Generate argument wrapping code. | |
| args is the argument list of the generated function (strings). | |
| Return value is a list of lines of code that will be inserted at | |
| the beginning of the function definition. | |
| """ | |
| return [] | |
| def _print_unpacking(self, unpackto, arg): | |
| """Generate argument unpacking code. | |
| arg is the function argument to be unpacked (a string), and | |
| unpackto is a list or nested lists of the variable names (strings) to | |
| unpack to. | |
| """ | |
| def unpack_lhs(lvalues): | |
| return '[{}]'.format(', '.join( | |
| unpack_lhs(val) if iterable(val) else val for val in lvalues)) | |
| return ['{} = {}'.format(unpack_lhs(unpackto), arg)] | |
| class _TensorflowEvaluatorPrinter(_EvaluatorPrinter): | |
| def _print_unpacking(self, lvalues, rvalue): | |
| """Generate argument unpacking code. | |
| This method is used when the input value is not interable, | |
| but can be indexed (see issue #14655). | |
| """ | |
| def flat_indexes(elems): | |
| n = 0 | |
| for el in elems: | |
| if iterable(el): | |
| for ndeep in flat_indexes(el): | |
| yield (n,) + ndeep | |
| else: | |
| yield (n,) | |
| n += 1 | |
| indexed = ', '.join('{}[{}]'.format(rvalue, ']['.join(map(str, ind))) | |
| for ind in flat_indexes(lvalues)) | |
| return ['[{}] = [{}]'.format(', '.join(flatten(lvalues)), indexed)] | |
| def _imp_namespace(expr, namespace=None): | |
| """ Return namespace dict with function implementations | |
| We need to search for functions in anything that can be thrown at | |
| us - that is - anything that could be passed as ``expr``. Examples | |
| include SymPy expressions, as well as tuples, lists and dicts that may | |
| contain SymPy expressions. | |
| Parameters | |
| ---------- | |
| expr : object | |
| Something passed to lambdify, that will generate valid code from | |
| ``str(expr)``. | |
| namespace : None or mapping | |
| Namespace to fill. None results in new empty dict | |
| Returns | |
| ------- | |
| namespace : dict | |
| dict with keys of implemented function names within ``expr`` and | |
| corresponding values being the numerical implementation of | |
| function | |
| Examples | |
| ======== | |
| >>> from sympy.abc import x | |
| >>> from sympy.utilities.lambdify import implemented_function, _imp_namespace | |
| >>> from sympy import Function | |
| >>> f = implemented_function(Function('f'), lambda x: x+1) | |
| >>> g = implemented_function(Function('g'), lambda x: x*10) | |
| >>> namespace = _imp_namespace(f(g(x))) | |
| >>> sorted(namespace.keys()) | |
| ['f', 'g'] | |
| """ | |
| # Delayed import to avoid circular imports | |
| from sympy.core.function import FunctionClass | |
| if namespace is None: | |
| namespace = {} | |
| # tuples, lists, dicts are valid expressions | |
| if is_sequence(expr): | |
| for arg in expr: | |
| _imp_namespace(arg, namespace) | |
| return namespace | |
| elif isinstance(expr, dict): | |
| for key, val in expr.items(): | |
| # functions can be in dictionary keys | |
| _imp_namespace(key, namespace) | |
| _imp_namespace(val, namespace) | |
| return namespace | |
| # SymPy expressions may be Functions themselves | |
| func = getattr(expr, 'func', None) | |
| if isinstance(func, FunctionClass): | |
| imp = getattr(func, '_imp_', None) | |
| if imp is not None: | |
| name = expr.func.__name__ | |
| if name in namespace and namespace[name] != imp: | |
| raise ValueError('We found more than one ' | |
| 'implementation with name ' | |
| '"%s"' % name) | |
| namespace[name] = imp | |
| # and / or they may take Functions as arguments | |
| if hasattr(expr, 'args'): | |
| for arg in expr.args: | |
| _imp_namespace(arg, namespace) | |
| return namespace | |
| def implemented_function(symfunc, implementation): | |
| """ Add numerical ``implementation`` to function ``symfunc``. | |
| ``symfunc`` can be an ``UndefinedFunction`` instance, or a name string. | |
| In the latter case we create an ``UndefinedFunction`` instance with that | |
| name. | |
| Be aware that this is a quick workaround, not a general method to create | |
| special symbolic functions. If you want to create a symbolic function to be | |
| used by all the machinery of SymPy you should subclass the ``Function`` | |
| class. | |
| Parameters | |
| ---------- | |
| symfunc : ``str`` or ``UndefinedFunction`` instance | |
| If ``str``, then create new ``UndefinedFunction`` with this as | |
| name. If ``symfunc`` is an Undefined function, create a new function | |
| with the same name and the implemented function attached. | |
| implementation : callable | |
| numerical implementation to be called by ``evalf()`` or ``lambdify`` | |
| Returns | |
| ------- | |
| afunc : sympy.FunctionClass instance | |
| function with attached implementation | |
| Examples | |
| ======== | |
| >>> from sympy.abc import x | |
| >>> from sympy.utilities.lambdify import implemented_function | |
| >>> from sympy import lambdify | |
| >>> f = implemented_function('f', lambda x: x+1) | |
| >>> lam_f = lambdify(x, f(x)) | |
| >>> lam_f(4) | |
| 5 | |
| """ | |
| # Delayed import to avoid circular imports | |
| from sympy.core.function import UndefinedFunction | |
| # if name, create function to hold implementation | |
| kwargs = {} | |
| if isinstance(symfunc, UndefinedFunction): | |
| kwargs = symfunc._kwargs | |
| symfunc = symfunc.__name__ | |
| if isinstance(symfunc, str): | |
| # Keyword arguments to UndefinedFunction are added as attributes to | |
| # the created class. | |
| symfunc = UndefinedFunction( | |
| symfunc, _imp_=staticmethod(implementation), **kwargs) | |
| elif not isinstance(symfunc, UndefinedFunction): | |
| raise ValueError(filldedent(''' | |
| symfunc should be either a string or | |
| an UndefinedFunction instance.''')) | |
| return symfunc | |
| def _too_large_for_docstring(expr, limit): | |
| """Decide whether an ``Expr`` is too large to be fully rendered in a | |
| ``lambdify`` docstring. | |
| This is a fast alternative to ``count_ops``, which can become prohibitively | |
| slow for large expressions, because in this instance we only care whether | |
| ``limit`` is exceeded rather than counting the exact number of nodes in the | |
| expression. | |
| Parameters | |
| ========== | |
| expr : ``Expr``, (nested) ``list`` of ``Expr``, or ``Matrix`` | |
| The same objects that can be passed to the ``expr`` argument of | |
| ``lambdify``. | |
| limit : ``int`` or ``None`` | |
| The threshold above which an expression contains too many nodes to be | |
| usefully rendered in the docstring. If ``None`` then there is no limit. | |
| Returns | |
| ======= | |
| bool | |
| ``True`` if the number of nodes in the expression exceeds the limit, | |
| ``False`` otherwise. | |
| Examples | |
| ======== | |
| >>> from sympy.abc import x, y, z | |
| >>> from sympy.utilities.lambdify import _too_large_for_docstring | |
| >>> expr = x | |
| >>> _too_large_for_docstring(expr, None) | |
| False | |
| >>> _too_large_for_docstring(expr, 100) | |
| False | |
| >>> _too_large_for_docstring(expr, 1) | |
| False | |
| >>> _too_large_for_docstring(expr, 0) | |
| True | |
| >>> _too_large_for_docstring(expr, -1) | |
| True | |
| Does this split it? | |
| >>> expr = [x, y, z] | |
| >>> _too_large_for_docstring(expr, None) | |
| False | |
| >>> _too_large_for_docstring(expr, 100) | |
| False | |
| >>> _too_large_for_docstring(expr, 1) | |
| True | |
| >>> _too_large_for_docstring(expr, 0) | |
| True | |
| >>> _too_large_for_docstring(expr, -1) | |
| True | |
| >>> expr = [x, [y], z, [[x+y], [x*y*z, [x+y+z]]]] | |
| >>> _too_large_for_docstring(expr, None) | |
| False | |
| >>> _too_large_for_docstring(expr, 100) | |
| False | |
| >>> _too_large_for_docstring(expr, 1) | |
| True | |
| >>> _too_large_for_docstring(expr, 0) | |
| True | |
| >>> _too_large_for_docstring(expr, -1) | |
| True | |
| >>> expr = ((x + y + z)**5).expand() | |
| >>> _too_large_for_docstring(expr, None) | |
| False | |
| >>> _too_large_for_docstring(expr, 100) | |
| True | |
| >>> _too_large_for_docstring(expr, 1) | |
| True | |
| >>> _too_large_for_docstring(expr, 0) | |
| True | |
| >>> _too_large_for_docstring(expr, -1) | |
| True | |
| >>> from sympy import Matrix | |
| >>> expr = Matrix([[(x + y + z), ((x + y + z)**2).expand(), | |
| ... ((x + y + z)**3).expand(), ((x + y + z)**4).expand()]]) | |
| >>> _too_large_for_docstring(expr, None) | |
| False | |
| >>> _too_large_for_docstring(expr, 1000) | |
| False | |
| >>> _too_large_for_docstring(expr, 100) | |
| True | |
| >>> _too_large_for_docstring(expr, 1) | |
| True | |
| >>> _too_large_for_docstring(expr, 0) | |
| True | |
| >>> _too_large_for_docstring(expr, -1) | |
| True | |
| """ | |
| # Must be imported here to avoid a circular import error | |
| from sympy.core.traversal import postorder_traversal | |
| if limit is None: | |
| return False | |
| i = 0 | |
| for _ in postorder_traversal(expr): | |
| i += 1 | |
| if i > limit: | |
| return True | |
| return False | |