Spaces:
Sleeping
Sleeping
from sympy.core import (Function, Pow, sympify, Expr) | |
from sympy.core.relational import Relational | |
from sympy.core.singleton import S | |
from sympy.polys import Poly, decompose | |
from sympy.utilities.misc import func_name | |
from sympy.functions.elementary.miscellaneous import Min, Max | |
def decompogen(f, symbol): | |
""" | |
Computes General functional decomposition of ``f``. | |
Given an expression ``f``, returns a list ``[f_1, f_2, ..., f_n]``, | |
where:: | |
f = f_1 o f_2 o ... f_n = f_1(f_2(... f_n)) | |
Note: This is a General decomposition function. It also decomposes | |
Polynomials. For only Polynomial decomposition see ``decompose`` in polys. | |
Examples | |
======== | |
>>> from sympy.abc import x | |
>>> from sympy import decompogen, sqrt, sin, cos | |
>>> decompogen(sin(cos(x)), x) | |
[sin(x), cos(x)] | |
>>> decompogen(sin(x)**2 + sin(x) + 1, x) | |
[x**2 + x + 1, sin(x)] | |
>>> decompogen(sqrt(6*x**2 - 5), x) | |
[sqrt(x), 6*x**2 - 5] | |
>>> decompogen(sin(sqrt(cos(x**2 + 1))), x) | |
[sin(x), sqrt(x), cos(x), x**2 + 1] | |
>>> decompogen(x**4 + 2*x**3 - x - 1, x) | |
[x**2 - x - 1, x**2 + x] | |
""" | |
f = sympify(f) | |
if not isinstance(f, Expr) or isinstance(f, Relational): | |
raise TypeError('expecting Expr but got: `%s`' % func_name(f)) | |
if symbol not in f.free_symbols: | |
return [f] | |
# ===== Simple Functions ===== # | |
if isinstance(f, (Function, Pow)): | |
if f.is_Pow and f.base == S.Exp1: | |
arg = f.exp | |
else: | |
arg = f.args[0] | |
if arg == symbol: | |
return [f] | |
return [f.subs(arg, symbol)] + decompogen(arg, symbol) | |
# ===== Min/Max Functions ===== # | |
if isinstance(f, (Min, Max)): | |
args = list(f.args) | |
d0 = None | |
for i, a in enumerate(args): | |
if not a.has_free(symbol): | |
continue | |
d = decompogen(a, symbol) | |
if len(d) == 1: | |
d = [symbol] + d | |
if d0 is None: | |
d0 = d[1:] | |
elif d[1:] != d0: | |
# decomposition is not the same for each arg: | |
# mark as having no decomposition | |
d = [symbol] | |
break | |
args[i] = d[0] | |
if d[0] == symbol: | |
return [f] | |
return [f.func(*args)] + d0 | |
# ===== Convert to Polynomial ===== # | |
fp = Poly(f) | |
gens = list(filter(lambda x: symbol in x.free_symbols, fp.gens)) | |
if len(gens) == 1 and gens[0] != symbol: | |
f1 = f.subs(gens[0], symbol) | |
f2 = gens[0] | |
return [f1] + decompogen(f2, symbol) | |
# ===== Polynomial decompose() ====== # | |
try: | |
return decompose(f) | |
except ValueError: | |
return [f] | |
def compogen(g_s, symbol): | |
""" | |
Returns the composition of functions. | |
Given a list of functions ``g_s``, returns their composition ``f``, | |
where: | |
f = g_1 o g_2 o .. o g_n | |
Note: This is a General composition function. It also composes Polynomials. | |
For only Polynomial composition see ``compose`` in polys. | |
Examples | |
======== | |
>>> from sympy.solvers.decompogen import compogen | |
>>> from sympy.abc import x | |
>>> from sympy import sqrt, sin, cos | |
>>> compogen([sin(x), cos(x)], x) | |
sin(cos(x)) | |
>>> compogen([x**2 + x + 1, sin(x)], x) | |
sin(x)**2 + sin(x) + 1 | |
>>> compogen([sqrt(x), 6*x**2 - 5], x) | |
sqrt(6*x**2 - 5) | |
>>> compogen([sin(x), sqrt(x), cos(x), x**2 + 1], x) | |
sin(sqrt(cos(x**2 + 1))) | |
>>> compogen([x**2 - x - 1, x**2 + x], x) | |
-x**2 - x + (x**2 + x)**2 - 1 | |
""" | |
if len(g_s) == 1: | |
return g_s[0] | |
foo = g_s[0].subs(symbol, g_s[1]) | |
if len(g_s) == 2: | |
return foo | |
return compogen([foo] + g_s[2:], symbol) | |