Spaces:
Sleeping
Sleeping
from sympy.core.random import randrange | |
from sympy.simplify.hyperexpand import (ShiftA, ShiftB, UnShiftA, UnShiftB, | |
MeijerShiftA, MeijerShiftB, MeijerShiftC, MeijerShiftD, | |
MeijerUnShiftA, MeijerUnShiftB, MeijerUnShiftC, | |
MeijerUnShiftD, | |
ReduceOrder, reduce_order, apply_operators, | |
devise_plan, make_derivative_operator, Formula, | |
hyperexpand, Hyper_Function, G_Function, | |
reduce_order_meijer, | |
build_hypergeometric_formula) | |
from sympy.concrete.summations import Sum | |
from sympy.core.containers import Tuple | |
from sympy.core.expr import Expr | |
from sympy.core.numbers import I | |
from sympy.core.singleton import S | |
from sympy.core.symbol import symbols | |
from sympy.functions.combinatorial.factorials import binomial | |
from sympy.functions.elementary.piecewise import Piecewise | |
from sympy.functions.special.hyper import (hyper, meijerg) | |
from sympy.abc import z, a, b, c | |
from sympy.testing.pytest import XFAIL, raises, slow, tooslow | |
from sympy.core.random import verify_numerically as tn | |
from sympy.core.numbers import (Rational, pi) | |
from sympy.functions.elementary.exponential import (exp, exp_polar, log) | |
from sympy.functions.elementary.hyperbolic import atanh | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import (asin, cos, sin) | |
from sympy.functions.special.bessel import besseli | |
from sympy.functions.special.error_functions import erf | |
from sympy.functions.special.gamma_functions import (gamma, lowergamma) | |
def test_branch_bug(): | |
assert hyperexpand(hyper((Rational(-1, 3), S.Half), (Rational(2, 3), Rational(3, 2)), -z)) == \ | |
-z**S('1/3')*lowergamma(exp_polar(I*pi)/3, z)/5 \ | |
+ sqrt(pi)*erf(sqrt(z))/(5*sqrt(z)) | |
assert hyperexpand(meijerg([Rational(7, 6), 1], [], [Rational(2, 3)], [Rational(1, 6), 0], z)) == \ | |
2*z**S('2/3')*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) - 2*lowergamma( | |
Rational(2, 3), z)/z**S('2/3'))*gamma(Rational(2, 3))/gamma(Rational(5, 3)) | |
def test_hyperexpand(): | |
# Luke, Y. L. (1969), The Special Functions and Their Approximations, | |
# Volume 1, section 6.2 | |
assert hyperexpand(hyper([], [], z)) == exp(z) | |
assert hyperexpand(hyper([1, 1], [2], -z)*z) == log(1 + z) | |
assert hyperexpand(hyper([], [S.Half], -z**2/4)) == cos(z) | |
assert hyperexpand(z*hyper([], [S('3/2')], -z**2/4)) == sin(z) | |
assert hyperexpand(hyper([S('1/2'), S('1/2')], [S('3/2')], z**2)*z) \ | |
== asin(z) | |
assert isinstance(Sum(binomial(2, z)*z**2, (z, 0, a)).doit(), Expr) | |
def can_do(ap, bq, numerical=True, div=1, lowerplane=False): | |
r = hyperexpand(hyper(ap, bq, z)) | |
if r.has(hyper): | |
return False | |
if not numerical: | |
return True | |
repl = {} | |
randsyms = r.free_symbols - {z} | |
while randsyms: | |
# Only randomly generated parameters are checked. | |
for n, ai in enumerate(randsyms): | |
repl[ai] = randcplx(n)/div | |
if not any(b.is_Integer and b <= 0 for b in Tuple(*bq).subs(repl)): | |
break | |
[a, b, c, d] = [2, -1, 3, 1] | |
if lowerplane: | |
[a, b, c, d] = [2, -2, 3, -1] | |
return tn( | |
hyper(ap, bq, z).subs(repl), | |
r.replace(exp_polar, exp).subs(repl), | |
z, a=a, b=b, c=c, d=d) | |
def test_roach(): | |
# Kelly B. Roach. Meijer G Function Representations. | |
# Section "Gallery" | |
assert can_do([S.Half], [Rational(9, 2)]) | |
assert can_do([], [1, Rational(5, 2), 4]) | |
assert can_do([Rational(-1, 2), 1, 2], [3, 4]) | |
assert can_do([Rational(1, 3)], [Rational(-2, 3), Rational(-1, 2), S.Half, 1]) | |
assert can_do([Rational(-3, 2), Rational(-1, 2)], [Rational(-5, 2), 1]) | |
assert can_do([Rational(-3, 2), ], [Rational(-1, 2), S.Half]) # shine-integral | |
assert can_do([Rational(-3, 2), Rational(-1, 2)], [2]) # elliptic integrals | |
def test_roach_fail(): | |
assert can_do([Rational(-1, 2), 1], [Rational(1, 4), S.Half, Rational(3, 4)]) # PFDD | |
assert can_do([Rational(3, 2)], [Rational(5, 2), 5]) # struve function | |
assert can_do([Rational(-1, 2), S.Half, 1], [Rational(3, 2), Rational(5, 2)]) # polylog, pfdd | |
assert can_do([1, 2, 3], [S.Half, 4]) # XXX ? | |
assert can_do([S.Half], [Rational(-1, 3), Rational(-1, 2), Rational(-2, 3)]) # PFDD ? | |
# For the long table tests, see end of file | |
def test_polynomial(): | |
from sympy.core.numbers import oo | |
assert hyperexpand(hyper([], [-1], z)) is oo | |
assert hyperexpand(hyper([-2], [-1], z)) is oo | |
assert hyperexpand(hyper([0, 0], [-1], z)) == 1 | |
assert can_do([-5, -2, randcplx(), randcplx()], [-10, randcplx()]) | |
assert hyperexpand(hyper((-1, 1), (-2,), z)) == 1 + z/2 | |
def test_hyperexpand_bases(): | |
assert hyperexpand(hyper([2], [a], z)) == \ | |
a + z**(-a + 1)*(-a**2 + 3*a + z*(a - 1) - 2)*exp(z)* \ | |
lowergamma(a - 1, z) - 1 | |
# TODO [a+1, aRational(-1, 2)], [2*a] | |
assert hyperexpand(hyper([1, 2], [3], z)) == -2/z - 2*log(-z + 1)/z**2 | |
assert hyperexpand(hyper([S.Half, 2], [Rational(3, 2)], z)) == \ | |
-1/(2*z - 2) + atanh(sqrt(z))/sqrt(z)/2 | |
assert hyperexpand(hyper([S.Half, S.Half], [Rational(5, 2)], z)) == \ | |
(-3*z + 3)/4/(z*sqrt(-z + 1)) \ | |
+ (6*z - 3)*asin(sqrt(z))/(4*z**Rational(3, 2)) | |
assert hyperexpand(hyper([1, 2], [Rational(3, 2)], z)) == -1/(2*z - 2) \ | |
- asin(sqrt(z))/(sqrt(z)*(2*z - 2)*sqrt(-z + 1)) | |
assert hyperexpand(hyper([Rational(-1, 2) - 1, 1, 2], [S.Half, 3], z)) == \ | |
sqrt(z)*(z*Rational(6, 7) - Rational(6, 5))*atanh(sqrt(z)) \ | |
+ (-30*z**2 + 32*z - 6)/35/z - 6*log(-z + 1)/(35*z**2) | |
assert hyperexpand(hyper([1 + S.Half, 1, 1], [2, 2], z)) == \ | |
-4*log(sqrt(-z + 1)/2 + S.Half)/z | |
# TODO hyperexpand(hyper([a], [2*a + 1], z)) | |
# TODO [S.Half, a], [Rational(3, 2), a+1] | |
assert hyperexpand(hyper([2], [b, 1], z)) == \ | |
z**(-b/2 + S.Half)*besseli(b - 1, 2*sqrt(z))*gamma(b) \ | |
+ z**(-b/2 + 1)*besseli(b, 2*sqrt(z))*gamma(b) | |
# TODO [a], [a - S.Half, 2*a] | |
def test_hyperexpand_parametric(): | |
assert hyperexpand(hyper([a, S.Half + a], [S.Half], z)) \ | |
== (1 + sqrt(z))**(-2*a)/2 + (1 - sqrt(z))**(-2*a)/2 | |
assert hyperexpand(hyper([a, Rational(-1, 2) + a], [2*a], z)) \ | |
== 2**(2*a - 1)*((-z + 1)**S.Half + 1)**(-2*a + 1) | |
def test_shifted_sum(): | |
from sympy.simplify.simplify import simplify | |
assert simplify(hyperexpand(z**4*hyper([2], [3, S('3/2')], -z**2))) \ | |
== z*sin(2*z) + (-z**2 + S.Half)*cos(2*z) - S.Half | |
def _randrat(): | |
""" Steer clear of integers. """ | |
return S(randrange(25) + 10)/50 | |
def randcplx(offset=-1): | |
""" Polys is not good with real coefficients. """ | |
return _randrat() + I*_randrat() + I*(1 + offset) | |
def test_formulae(): | |
from sympy.simplify.hyperexpand import FormulaCollection | |
formulae = FormulaCollection().formulae | |
for formula in formulae: | |
h = formula.func(formula.z) | |
rep = {} | |
for n, sym in enumerate(formula.symbols): | |
rep[sym] = randcplx(n) | |
# NOTE hyperexpand returns truly branched functions. We know we are | |
# on the main sheet, but numerical evaluation can still go wrong | |
# (e.g. if exp_polar cannot be evalf'd). | |
# Just replace all exp_polar by exp, this usually works. | |
# first test if the closed-form is actually correct | |
h = h.subs(rep) | |
closed_form = formula.closed_form.subs(rep).rewrite('nonrepsmall') | |
z = formula.z | |
assert tn(h, closed_form.replace(exp_polar, exp), z) | |
# now test the computed matrix | |
cl = (formula.C * formula.B)[0].subs(rep).rewrite('nonrepsmall') | |
assert tn(closed_form.replace( | |
exp_polar, exp), cl.replace(exp_polar, exp), z) | |
deriv1 = z*formula.B.applyfunc(lambda t: t.rewrite( | |
'nonrepsmall')).diff(z) | |
deriv2 = formula.M * formula.B | |
for d1, d2 in zip(deriv1, deriv2): | |
assert tn(d1.subs(rep).replace(exp_polar, exp), | |
d2.subs(rep).rewrite('nonrepsmall').replace(exp_polar, exp), z) | |
def test_meijerg_formulae(): | |
from sympy.simplify.hyperexpand import MeijerFormulaCollection | |
formulae = MeijerFormulaCollection().formulae | |
for sig in formulae: | |
for formula in formulae[sig]: | |
g = meijerg(formula.func.an, formula.func.ap, | |
formula.func.bm, formula.func.bq, | |
formula.z) | |
rep = {} | |
for sym in formula.symbols: | |
rep[sym] = randcplx() | |
# first test if the closed-form is actually correct | |
g = g.subs(rep) | |
closed_form = formula.closed_form.subs(rep) | |
z = formula.z | |
assert tn(g, closed_form, z) | |
# now test the computed matrix | |
cl = (formula.C * formula.B)[0].subs(rep) | |
assert tn(closed_form, cl, z) | |
deriv1 = z*formula.B.diff(z) | |
deriv2 = formula.M * formula.B | |
for d1, d2 in zip(deriv1, deriv2): | |
assert tn(d1.subs(rep), d2.subs(rep), z) | |
def op(f): | |
return z*f.diff(z) | |
def test_plan(): | |
assert devise_plan(Hyper_Function([0], ()), | |
Hyper_Function([0], ()), z) == [] | |
with raises(ValueError): | |
devise_plan(Hyper_Function([1], ()), Hyper_Function((), ()), z) | |
with raises(ValueError): | |
devise_plan(Hyper_Function([2], [1]), Hyper_Function([2], [2]), z) | |
with raises(ValueError): | |
devise_plan(Hyper_Function([2], []), Hyper_Function([S("1/2")], []), z) | |
# We cannot use pi/(10000 + n) because polys is insanely slow. | |
a1, a2, b1 = (randcplx(n) for n in range(3)) | |
b1 += 2*I | |
h = hyper([a1, a2], [b1], z) | |
h2 = hyper((a1 + 1, a2), [b1], z) | |
assert tn(apply_operators(h, | |
devise_plan(Hyper_Function((a1 + 1, a2), [b1]), | |
Hyper_Function((a1, a2), [b1]), z), op), | |
h2, z) | |
h2 = hyper((a1 + 1, a2 - 1), [b1], z) | |
assert tn(apply_operators(h, | |
devise_plan(Hyper_Function((a1 + 1, a2 - 1), [b1]), | |
Hyper_Function((a1, a2), [b1]), z), op), | |
h2, z) | |
def test_plan_derivatives(): | |
a1, a2, a3 = 1, 2, S('1/2') | |
b1, b2 = 3, S('5/2') | |
h = Hyper_Function((a1, a2, a3), (b1, b2)) | |
h2 = Hyper_Function((a1 + 1, a2 + 1, a3 + 2), (b1 + 1, b2 + 1)) | |
ops = devise_plan(h2, h, z) | |
f = Formula(h, z, h(z), []) | |
deriv = make_derivative_operator(f.M, z) | |
assert tn((apply_operators(f.C, ops, deriv)*f.B)[0], h2(z), z) | |
h2 = Hyper_Function((a1, a2 - 1, a3 - 2), (b1 - 1, b2 - 1)) | |
ops = devise_plan(h2, h, z) | |
assert tn((apply_operators(f.C, ops, deriv)*f.B)[0], h2(z), z) | |
def test_reduction_operators(): | |
a1, a2, b1 = (randcplx(n) for n in range(3)) | |
h = hyper([a1], [b1], z) | |
assert ReduceOrder(2, 0) is None | |
assert ReduceOrder(2, -1) is None | |
assert ReduceOrder(1, S('1/2')) is None | |
h2 = hyper((a1, a2), (b1, a2), z) | |
assert tn(ReduceOrder(a2, a2).apply(h, op), h2, z) | |
h2 = hyper((a1, a2 + 1), (b1, a2), z) | |
assert tn(ReduceOrder(a2 + 1, a2).apply(h, op), h2, z) | |
h2 = hyper((a2 + 4, a1), (b1, a2), z) | |
assert tn(ReduceOrder(a2 + 4, a2).apply(h, op), h2, z) | |
# test several step order reduction | |
ap = (a2 + 4, a1, b1 + 1) | |
bq = (a2, b1, b1) | |
func, ops = reduce_order(Hyper_Function(ap, bq)) | |
assert func.ap == (a1,) | |
assert func.bq == (b1,) | |
assert tn(apply_operators(h, ops, op), hyper(ap, bq, z), z) | |
def test_shift_operators(): | |
a1, a2, b1, b2, b3 = (randcplx(n) for n in range(5)) | |
h = hyper((a1, a2), (b1, b2, b3), z) | |
raises(ValueError, lambda: ShiftA(0)) | |
raises(ValueError, lambda: ShiftB(1)) | |
assert tn(ShiftA(a1).apply(h, op), hyper((a1 + 1, a2), (b1, b2, b3), z), z) | |
assert tn(ShiftA(a2).apply(h, op), hyper((a1, a2 + 1), (b1, b2, b3), z), z) | |
assert tn(ShiftB(b1).apply(h, op), hyper((a1, a2), (b1 - 1, b2, b3), z), z) | |
assert tn(ShiftB(b2).apply(h, op), hyper((a1, a2), (b1, b2 - 1, b3), z), z) | |
assert tn(ShiftB(b3).apply(h, op), hyper((a1, a2), (b1, b2, b3 - 1), z), z) | |
def test_ushift_operators(): | |
a1, a2, b1, b2, b3 = (randcplx(n) for n in range(5)) | |
h = hyper((a1, a2), (b1, b2, b3), z) | |
raises(ValueError, lambda: UnShiftA((1,), (), 0, z)) | |
raises(ValueError, lambda: UnShiftB((), (-1,), 0, z)) | |
raises(ValueError, lambda: UnShiftA((1,), (0, -1, 1), 0, z)) | |
raises(ValueError, lambda: UnShiftB((0, 1), (1,), 0, z)) | |
s = UnShiftA((a1, a2), (b1, b2, b3), 0, z) | |
assert tn(s.apply(h, op), hyper((a1 - 1, a2), (b1, b2, b3), z), z) | |
s = UnShiftA((a1, a2), (b1, b2, b3), 1, z) | |
assert tn(s.apply(h, op), hyper((a1, a2 - 1), (b1, b2, b3), z), z) | |
s = UnShiftB((a1, a2), (b1, b2, b3), 0, z) | |
assert tn(s.apply(h, op), hyper((a1, a2), (b1 + 1, b2, b3), z), z) | |
s = UnShiftB((a1, a2), (b1, b2, b3), 1, z) | |
assert tn(s.apply(h, op), hyper((a1, a2), (b1, b2 + 1, b3), z), z) | |
s = UnShiftB((a1, a2), (b1, b2, b3), 2, z) | |
assert tn(s.apply(h, op), hyper((a1, a2), (b1, b2, b3 + 1), z), z) | |
def can_do_meijer(a1, a2, b1, b2, numeric=True): | |
""" | |
This helper function tries to hyperexpand() the meijer g-function | |
corresponding to the parameters a1, a2, b1, b2. | |
It returns False if this expansion still contains g-functions. | |
If numeric is True, it also tests the so-obtained formula numerically | |
(at random values) and returns False if the test fails. | |
Else it returns True. | |
""" | |
from sympy.core.function import expand | |
from sympy.functions.elementary.complexes import unpolarify | |
r = hyperexpand(meijerg(a1, a2, b1, b2, z)) | |
if r.has(meijerg): | |
return False | |
# NOTE hyperexpand() returns a truly branched function, whereas numerical | |
# evaluation only works on the main branch. Since we are evaluating on | |
# the main branch, this should not be a problem, but expressions like | |
# exp_polar(I*pi/2*x)**a are evaluated incorrectly. We thus have to get | |
# rid of them. The expand heuristically does this... | |
r = unpolarify(expand(r, force=True, power_base=True, power_exp=False, | |
mul=False, log=False, multinomial=False, basic=False)) | |
if not numeric: | |
return True | |
repl = {} | |
for n, ai in enumerate(meijerg(a1, a2, b1, b2, z).free_symbols - {z}): | |
repl[ai] = randcplx(n) | |
return tn(meijerg(a1, a2, b1, b2, z).subs(repl), r.subs(repl), z) | |
def test_meijerg_expand(): | |
from sympy.simplify.gammasimp import gammasimp | |
from sympy.simplify.simplify import simplify | |
# from mpmath docs | |
assert hyperexpand(meijerg([[], []], [[0], []], -z)) == exp(z) | |
assert hyperexpand(meijerg([[1, 1], []], [[1], [0]], z)) == \ | |
log(z + 1) | |
assert hyperexpand(meijerg([[1, 1], []], [[1], [1]], z)) == \ | |
z/(z + 1) | |
assert hyperexpand(meijerg([[], []], [[S.Half], [0]], (z/2)**2)) \ | |
== sin(z)/sqrt(pi) | |
assert hyperexpand(meijerg([[], []], [[0], [S.Half]], (z/2)**2)) \ | |
== cos(z)/sqrt(pi) | |
assert can_do_meijer([], [a], [a - 1, a - S.Half], []) | |
assert can_do_meijer([], [], [a/2], [-a/2], False) # branches... | |
assert can_do_meijer([a], [b], [a], [b, a - 1]) | |
# wikipedia | |
assert hyperexpand(meijerg([1], [], [], [0], z)) == \ | |
Piecewise((0, abs(z) < 1), (1, abs(1/z) < 1), | |
(meijerg([1], [], [], [0], z), True)) | |
assert hyperexpand(meijerg([], [1], [0], [], z)) == \ | |
Piecewise((1, abs(z) < 1), (0, abs(1/z) < 1), | |
(meijerg([], [1], [0], [], z), True)) | |
# The Special Functions and their Approximations | |
assert can_do_meijer([], [], [a + b/2], [a, a - b/2, a + S.Half]) | |
assert can_do_meijer( | |
[], [], [a], [b], False) # branches only agree for small z | |
assert can_do_meijer([], [S.Half], [a], [-a]) | |
assert can_do_meijer([], [], [a, b], []) | |
assert can_do_meijer([], [], [a, b], []) | |
assert can_do_meijer([], [], [a, a + S.Half], [b, b + S.Half]) | |
assert can_do_meijer([], [], [a, -a], [0, S.Half], False) # dito | |
assert can_do_meijer([], [], [a, a + S.Half, b, b + S.Half], []) | |
assert can_do_meijer([S.Half], [], [0], [a, -a]) | |
assert can_do_meijer([S.Half], [], [a], [0, -a], False) # dito | |
assert can_do_meijer([], [a - S.Half], [a, b], [a - S.Half], False) | |
assert can_do_meijer([], [a + S.Half], [a + b, a - b, a], [], False) | |
assert can_do_meijer([a + S.Half], [], [b, 2*a - b, a], [], False) | |
# This for example is actually zero. | |
assert can_do_meijer([], [], [], [a, b]) | |
# Testing a bug: | |
assert hyperexpand(meijerg([0, 2], [], [], [-1, 1], z)) == \ | |
Piecewise((0, abs(z) < 1), | |
(z*(1 - 1/z**2)/2, abs(1/z) < 1), | |
(meijerg([0, 2], [], [], [-1, 1], z), True)) | |
# Test that the simplest possible answer is returned: | |
assert gammasimp(simplify(hyperexpand( | |
meijerg([1], [1 - a], [-a/2, -a/2 + S.Half], [], 1/z)))) == \ | |
-2*sqrt(pi)*(sqrt(z + 1) + 1)**a/a | |
# Test that hyper is returned | |
assert hyperexpand(meijerg([1], [], [a], [0, 0], z)) == hyper( | |
(a,), (a + 1, a + 1), z*exp_polar(I*pi))*z**a*gamma(a)/gamma(a + 1)**2 | |
# Test place option | |
f = meijerg(((0, 1), ()), ((S.Half,), (0,)), z**2) | |
assert hyperexpand(f) == sqrt(pi)/sqrt(1 + z**(-2)) | |
assert hyperexpand(f, place=0) == sqrt(pi)*z/sqrt(z**2 + 1) | |
def test_meijerg_lookup(): | |
from sympy.functions.special.error_functions import (Ci, Si) | |
from sympy.functions.special.gamma_functions import uppergamma | |
assert hyperexpand(meijerg([a], [], [b, a], [], z)) == \ | |
z**b*exp(z)*gamma(-a + b + 1)*uppergamma(a - b, z) | |
assert hyperexpand(meijerg([0], [], [0, 0], [], z)) == \ | |
exp(z)*uppergamma(0, z) | |
assert can_do_meijer([a], [], [b, a + 1], []) | |
assert can_do_meijer([a], [], [b + 2, a], []) | |
assert can_do_meijer([a], [], [b - 2, a], []) | |
assert hyperexpand(meijerg([a], [], [a, a, a - S.Half], [], z)) == \ | |
-sqrt(pi)*z**(a - S.Half)*(2*cos(2*sqrt(z))*(Si(2*sqrt(z)) - pi/2) | |
- 2*sin(2*sqrt(z))*Ci(2*sqrt(z))) == \ | |
hyperexpand(meijerg([a], [], [a, a - S.Half, a], [], z)) == \ | |
hyperexpand(meijerg([a], [], [a - S.Half, a, a], [], z)) | |
assert can_do_meijer([a - 1], [], [a + 2, a - Rational(3, 2), a + 1], []) | |
def test_meijerg_expand_fail(): | |
# These basically test hyper([], [1/2 - a, 1/2 + 1, 1/2], z), | |
# which is *very* messy. But since the meijer g actually yields a | |
# sum of bessel functions, things can sometimes be simplified a lot and | |
# are then put into tables... | |
assert can_do_meijer([], [], [a + S.Half], [a, a - b/2, a + b/2]) | |
assert can_do_meijer([], [], [0, S.Half], [a, -a]) | |
assert can_do_meijer([], [], [3*a - S.Half, a, -a - S.Half], [a - S.Half]) | |
assert can_do_meijer([], [], [0, a - S.Half, -a - S.Half], [S.Half]) | |
assert can_do_meijer([], [], [a, b + S.Half, b], [2*b - a]) | |
assert can_do_meijer([], [], [a, b + S.Half, b, 2*b - a]) | |
assert can_do_meijer([S.Half], [], [-a, a], [0]) | |
def test_meijerg(): | |
# carefully set up the parameters. | |
# NOTE: this used to fail sometimes. I believe it is fixed, but if you | |
# hit an inexplicable test failure here, please let me know the seed. | |
a1, a2 = (randcplx(n) - 5*I - n*I for n in range(2)) | |
b1, b2 = (randcplx(n) + 5*I + n*I for n in range(2)) | |
b3, b4, b5, a3, a4, a5 = (randcplx() for n in range(6)) | |
g = meijerg([a1], [a3, a4], [b1], [b3, b4], z) | |
assert ReduceOrder.meijer_minus(3, 4) is None | |
assert ReduceOrder.meijer_plus(4, 3) is None | |
g2 = meijerg([a1, a2], [a3, a4], [b1], [b3, b4, a2], z) | |
assert tn(ReduceOrder.meijer_plus(a2, a2).apply(g, op), g2, z) | |
g2 = meijerg([a1, a2], [a3, a4], [b1], [b3, b4, a2 + 1], z) | |
assert tn(ReduceOrder.meijer_plus(a2, a2 + 1).apply(g, op), g2, z) | |
g2 = meijerg([a1, a2 - 1], [a3, a4], [b1], [b3, b4, a2 + 2], z) | |
assert tn(ReduceOrder.meijer_plus(a2 - 1, a2 + 2).apply(g, op), g2, z) | |
g2 = meijerg([a1], [a3, a4, b2 - 1], [b1, b2 + 2], [b3, b4], z) | |
assert tn(ReduceOrder.meijer_minus( | |
b2 + 2, b2 - 1).apply(g, op), g2, z, tol=1e-6) | |
# test several-step reduction | |
an = [a1, a2] | |
bq = [b3, b4, a2 + 1] | |
ap = [a3, a4, b2 - 1] | |
bm = [b1, b2 + 1] | |
niq, ops = reduce_order_meijer(G_Function(an, ap, bm, bq)) | |
assert niq.an == (a1,) | |
assert set(niq.ap) == {a3, a4} | |
assert niq.bm == (b1,) | |
assert set(niq.bq) == {b3, b4} | |
assert tn(apply_operators(g, ops, op), meijerg(an, ap, bm, bq, z), z) | |
def test_meijerg_shift_operators(): | |
# carefully set up the parameters. XXX this still fails sometimes | |
a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 = (randcplx(n) for n in range(10)) | |
g = meijerg([a1], [a3, a4], [b1], [b3, b4], z) | |
assert tn(MeijerShiftA(b1).apply(g, op), | |
meijerg([a1], [a3, a4], [b1 + 1], [b3, b4], z), z) | |
assert tn(MeijerShiftB(a1).apply(g, op), | |
meijerg([a1 - 1], [a3, a4], [b1], [b3, b4], z), z) | |
assert tn(MeijerShiftC(b3).apply(g, op), | |
meijerg([a1], [a3, a4], [b1], [b3 + 1, b4], z), z) | |
assert tn(MeijerShiftD(a3).apply(g, op), | |
meijerg([a1], [a3 - 1, a4], [b1], [b3, b4], z), z) | |
s = MeijerUnShiftA([a1], [a3, a4], [b1], [b3, b4], 0, z) | |
assert tn( | |
s.apply(g, op), meijerg([a1], [a3, a4], [b1 - 1], [b3, b4], z), z) | |
s = MeijerUnShiftC([a1], [a3, a4], [b1], [b3, b4], 0, z) | |
assert tn( | |
s.apply(g, op), meijerg([a1], [a3, a4], [b1], [b3 - 1, b4], z), z) | |
s = MeijerUnShiftB([a1], [a3, a4], [b1], [b3, b4], 0, z) | |
assert tn( | |
s.apply(g, op), meijerg([a1 + 1], [a3, a4], [b1], [b3, b4], z), z) | |
s = MeijerUnShiftD([a1], [a3, a4], [b1], [b3, b4], 0, z) | |
assert tn( | |
s.apply(g, op), meijerg([a1], [a3 + 1, a4], [b1], [b3, b4], z), z) | |
def test_meijerg_confluence(): | |
def t(m, a, b): | |
from sympy.core.sympify import sympify | |
a, b = sympify([a, b]) | |
m_ = m | |
m = hyperexpand(m) | |
if not m == Piecewise((a, abs(z) < 1), (b, abs(1/z) < 1), (m_, True)): | |
return False | |
if not (m.args[0].args[0] == a and m.args[1].args[0] == b): | |
return False | |
z0 = randcplx()/10 | |
if abs(m.subs(z, z0).n() - a.subs(z, z0).n()).n() > 1e-10: | |
return False | |
if abs(m.subs(z, 1/z0).n() - b.subs(z, 1/z0).n()).n() > 1e-10: | |
return False | |
return True | |
assert t(meijerg([], [1, 1], [0, 0], [], z), -log(z), 0) | |
assert t(meijerg( | |
[], [3, 1], [0, 0], [], z), -z**2/4 + z - log(z)/2 - Rational(3, 4), 0) | |
assert t(meijerg([], [3, 1], [-1, 0], [], z), | |
z**2/12 - z/2 + log(z)/2 + Rational(1, 4) + 1/(6*z), 0) | |
assert t(meijerg([], [1, 1, 1, 1], [0, 0, 0, 0], [], z), -log(z)**3/6, 0) | |
assert t(meijerg([1, 1], [], [], [0, 0], z), 0, -log(1/z)) | |
assert t(meijerg([1, 1], [2, 2], [1, 1], [0, 0], z), | |
-z*log(z) + 2*z, -log(1/z) + 2) | |
assert t(meijerg([S.Half], [1, 1], [0, 0], [Rational(3, 2)], z), log(z)/2 - 1, 0) | |
def u(an, ap, bm, bq): | |
m = meijerg(an, ap, bm, bq, z) | |
m2 = hyperexpand(m, allow_hyper=True) | |
if m2.has(meijerg) and not (m2.is_Piecewise and len(m2.args) == 3): | |
return False | |
return tn(m, m2, z) | |
assert u([], [1], [0, 0], []) | |
assert u([1, 1], [], [], [0]) | |
assert u([1, 1], [2, 2, 5], [1, 1, 6], [0, 0]) | |
assert u([1, 1], [2, 2, 5], [1, 1, 6], [0]) | |
def test_meijerg_with_Floats(): | |
# see issue #10681 | |
from sympy.polys.domains.realfield import RR | |
f = meijerg(((3.0, 1), ()), ((Rational(3, 2),), (0,)), z) | |
a = -2.3632718012073 | |
g = a*z**Rational(3, 2)*hyper((-0.5, Rational(3, 2)), (Rational(5, 2),), z*exp_polar(I*pi)) | |
assert RR.almosteq((hyperexpand(f)/g).n(), 1.0, 1e-12) | |
def test_lerchphi(): | |
from sympy.functions.special.zeta_functions import (lerchphi, polylog) | |
from sympy.simplify.gammasimp import gammasimp | |
assert hyperexpand(hyper([1, a], [a + 1], z)/a) == lerchphi(z, 1, a) | |
assert hyperexpand( | |
hyper([1, a, a], [a + 1, a + 1], z)/a**2) == lerchphi(z, 2, a) | |
assert hyperexpand(hyper([1, a, a, a], [a + 1, a + 1, a + 1], z)/a**3) == \ | |
lerchphi(z, 3, a) | |
assert hyperexpand(hyper([1] + [a]*10, [a + 1]*10, z)/a**10) == \ | |
lerchphi(z, 10, a) | |
assert gammasimp(hyperexpand(meijerg([0, 1 - a], [], [0], | |
[-a], exp_polar(-I*pi)*z))) == lerchphi(z, 1, a) | |
assert gammasimp(hyperexpand(meijerg([0, 1 - a, 1 - a], [], [0], | |
[-a, -a], exp_polar(-I*pi)*z))) == lerchphi(z, 2, a) | |
assert gammasimp(hyperexpand(meijerg([0, 1 - a, 1 - a, 1 - a], [], [0], | |
[-a, -a, -a], exp_polar(-I*pi)*z))) == lerchphi(z, 3, a) | |
assert hyperexpand(z*hyper([1, 1], [2], z)) == -log(1 + -z) | |
assert hyperexpand(z*hyper([1, 1, 1], [2, 2], z)) == polylog(2, z) | |
assert hyperexpand(z*hyper([1, 1, 1, 1], [2, 2, 2], z)) == polylog(3, z) | |
assert hyperexpand(hyper([1, a, 1 + S.Half], [a + 1, S.Half], z)) == \ | |
-2*a/(z - 1) + (-2*a**2 + a)*lerchphi(z, 1, a) | |
# Now numerical tests. These make sure reductions etc are carried out | |
# correctly | |
# a rational function (polylog at negative integer order) | |
assert can_do([2, 2, 2], [1, 1]) | |
# NOTE these contain log(1-x) etc ... better make sure we have |z| < 1 | |
# reduction of order for polylog | |
assert can_do([1, 1, 1, b + 5], [2, 2, b], div=10) | |
# reduction of order for lerchphi | |
# XXX lerchphi in mpmath is flaky | |
assert can_do( | |
[1, a, a, a, b + 5], [a + 1, a + 1, a + 1, b], numerical=False) | |
# test a bug | |
from sympy.functions.elementary.complexes import Abs | |
assert hyperexpand(hyper([S.Half, S.Half, S.Half, 1], | |
[Rational(3, 2), Rational(3, 2), Rational(3, 2)], Rational(1, 4))) == \ | |
Abs(-polylog(3, exp_polar(I*pi)/2) + polylog(3, S.Half)) | |
def test_partial_simp(): | |
# First test that hypergeometric function formulae work. | |
a, b, c, d, e = (randcplx() for _ in range(5)) | |
for func in [Hyper_Function([a, b, c], [d, e]), | |
Hyper_Function([], [a, b, c, d, e])]: | |
f = build_hypergeometric_formula(func) | |
z = f.z | |
assert f.closed_form == func(z) | |
deriv1 = f.B.diff(z)*z | |
deriv2 = f.M*f.B | |
for func1, func2 in zip(deriv1, deriv2): | |
assert tn(func1, func2, z) | |
# Now test that formulae are partially simplified. | |
a, b, z = symbols('a b z') | |
assert hyperexpand(hyper([3, a], [1, b], z)) == \ | |
(-a*b/2 + a*z/2 + 2*a)*hyper([a + 1], [b], z) \ | |
+ (a*b/2 - 2*a + 1)*hyper([a], [b], z) | |
assert tn( | |
hyperexpand(hyper([3, d], [1, e], z)), hyper([3, d], [1, e], z), z) | |
assert hyperexpand(hyper([3], [1, a, b], z)) == \ | |
hyper((), (a, b), z) \ | |
+ z*hyper((), (a + 1, b), z)/(2*a) \ | |
- z*(b - 4)*hyper((), (a + 1, b + 1), z)/(2*a*b) | |
assert tn( | |
hyperexpand(hyper([3], [1, d, e], z)), hyper([3], [1, d, e], z), z) | |
def test_hyperexpand_special(): | |
assert hyperexpand(hyper([a, b], [c], 1)) == \ | |
gamma(c)*gamma(c - a - b)/gamma(c - a)/gamma(c - b) | |
assert hyperexpand(hyper([a, b], [1 + a - b], -1)) == \ | |
gamma(1 + a/2)*gamma(1 + a - b)/gamma(1 + a)/gamma(1 + a/2 - b) | |
assert hyperexpand(hyper([a, b], [1 + b - a], -1)) == \ | |
gamma(1 + b/2)*gamma(1 + b - a)/gamma(1 + b)/gamma(1 + b/2 - a) | |
assert hyperexpand(meijerg([1 - z - a/2], [1 - z + a/2], [b/2], [-b/2], 1)) == \ | |
gamma(1 - 2*z)*gamma(z + a/2 + b/2)/gamma(1 - z + a/2 - b/2) \ | |
/gamma(1 - z - a/2 + b/2)/gamma(1 - z + a/2 + b/2) | |
assert hyperexpand(hyper([a], [b], 0)) == 1 | |
assert hyper([a], [b], 0) != 0 | |
def test_Mod1_behavior(): | |
from sympy.core.symbol import Symbol | |
from sympy.simplify.simplify import simplify | |
n = Symbol('n', integer=True) | |
# Note: this should not hang. | |
assert simplify(hyperexpand(meijerg([1], [], [n + 1], [0], z))) == \ | |
lowergamma(n + 1, z) | |
def test_prudnikov_misc(): | |
assert can_do([1, (3 + I)/2, (3 - I)/2], [Rational(3, 2), 2]) | |
assert can_do([S.Half, a - 1], [Rational(3, 2), a + 1], lowerplane=True) | |
assert can_do([], [b + 1]) | |
assert can_do([a], [a - 1, b + 1]) | |
assert can_do([a], [a - S.Half, 2*a]) | |
assert can_do([a], [a - S.Half, 2*a + 1]) | |
assert can_do([a], [a - S.Half, 2*a - 1]) | |
assert can_do([a], [a + S.Half, 2*a]) | |
assert can_do([a], [a + S.Half, 2*a + 1]) | |
assert can_do([a], [a + S.Half, 2*a - 1]) | |
assert can_do([S.Half], [b, 2 - b]) | |
assert can_do([S.Half], [b, 3 - b]) | |
assert can_do([1], [2, b]) | |
assert can_do([a, a + S.Half], [2*a, b, 2*a - b + 1]) | |
assert can_do([a, a + S.Half], [S.Half, 2*a, 2*a + S.Half]) | |
assert can_do([a], [a + 1], lowerplane=True) # lowergamma | |
def test_prudnikov_1(): | |
# A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev (1990). | |
# Integrals and Series: More Special Functions, Vol. 3,. | |
# Gordon and Breach Science Publisher | |
# 7.3.1 | |
assert can_do([a, -a], [S.Half]) | |
assert can_do([a, 1 - a], [S.Half]) | |
assert can_do([a, 1 - a], [Rational(3, 2)]) | |
assert can_do([a, 2 - a], [S.Half]) | |
assert can_do([a, 2 - a], [Rational(3, 2)]) | |
assert can_do([a, 2 - a], [Rational(3, 2)]) | |
assert can_do([a, a + S.Half], [2*a - 1]) | |
assert can_do([a, a + S.Half], [2*a]) | |
assert can_do([a, a + S.Half], [2*a + 1]) | |
assert can_do([a, a + S.Half], [S.Half]) | |
assert can_do([a, a + S.Half], [Rational(3, 2)]) | |
assert can_do([a, a/2 + 1], [a/2]) | |
assert can_do([1, b], [2]) | |
assert can_do([1, b], [b + 1], numerical=False) # Lerch Phi | |
# NOTE: branches are complicated for |z| > 1 | |
assert can_do([a], [2*a]) | |
assert can_do([a], [2*a + 1]) | |
assert can_do([a], [2*a - 1]) | |
def test_prudnikov_2(): | |
h = S.Half | |
assert can_do([-h, -h], [h]) | |
assert can_do([-h, h], [3*h]) | |
assert can_do([-h, h], [5*h]) | |
assert can_do([-h, h], [7*h]) | |
assert can_do([-h, 1], [h]) | |
for p in [-h, h]: | |
for n in [-h, h, 1, 3*h, 2, 5*h, 3, 7*h, 4]: | |
for m in [-h, h, 3*h, 5*h, 7*h]: | |
assert can_do([p, n], [m]) | |
for n in [1, 2, 3, 4]: | |
for m in [1, 2, 3, 4]: | |
assert can_do([p, n], [m]) | |
def test_prudnikov_3(): | |
h = S.Half | |
assert can_do([Rational(1, 4), Rational(3, 4)], [h]) | |
assert can_do([Rational(1, 4), Rational(3, 4)], [3*h]) | |
assert can_do([Rational(1, 3), Rational(2, 3)], [3*h]) | |
assert can_do([Rational(3, 4), Rational(5, 4)], [h]) | |
assert can_do([Rational(3, 4), Rational(5, 4)], [3*h]) | |
def test_prudnikov_3_slow(): | |
# XXX: This is marked as tooslow and hence skipped in CI. None of the | |
# individual cases below fails or hangs. Some cases are slow and the loops | |
# below generate 280 different cases. Is it really necessary to test all | |
# 280 cases here? | |
h = S.Half | |
for p in [1, 2, 3, 4]: | |
for n in [-h, h, 1, 3*h, 2, 5*h, 3, 7*h, 4, 9*h]: | |
for m in [1, 3*h, 2, 5*h, 3, 7*h, 4]: | |
assert can_do([p, m], [n]) | |
def test_prudnikov_4(): | |
h = S.Half | |
for p in [3*h, 5*h, 7*h]: | |
for n in [-h, h, 3*h, 5*h, 7*h]: | |
for m in [3*h, 2, 5*h, 3, 7*h, 4]: | |
assert can_do([p, m], [n]) | |
for n in [1, 2, 3, 4]: | |
for m in [2, 3, 4]: | |
assert can_do([p, m], [n]) | |
def test_prudnikov_5(): | |
h = S.Half | |
for p in [1, 2, 3]: | |
for q in range(p, 4): | |
for r in [1, 2, 3]: | |
for s in range(r, 4): | |
assert can_do([-h, p, q], [r, s]) | |
for p in [h, 1, 3*h, 2, 5*h, 3]: | |
for q in [h, 3*h, 5*h]: | |
for r in [h, 3*h, 5*h]: | |
for s in [h, 3*h, 5*h]: | |
if s <= q and s <= r: | |
assert can_do([-h, p, q], [r, s]) | |
for p in [h, 1, 3*h, 2, 5*h, 3]: | |
for q in [1, 2, 3]: | |
for r in [h, 3*h, 5*h]: | |
for s in [1, 2, 3]: | |
assert can_do([-h, p, q], [r, s]) | |
def test_prudnikov_6(): | |
h = S.Half | |
for m in [3*h, 5*h]: | |
for n in [1, 2, 3]: | |
for q in [h, 1, 2]: | |
for p in [1, 2, 3]: | |
assert can_do([h, q, p], [m, n]) | |
for q in [1, 2, 3]: | |
for p in [3*h, 5*h]: | |
assert can_do([h, q, p], [m, n]) | |
for q in [1, 2]: | |
for p in [1, 2, 3]: | |
for m in [1, 2, 3]: | |
for n in [1, 2, 3]: | |
assert can_do([h, q, p], [m, n]) | |
assert can_do([h, h, 5*h], [3*h, 3*h]) | |
assert can_do([h, 1, 5*h], [3*h, 3*h]) | |
assert can_do([h, 2, 2], [1, 3]) | |
# pages 435 to 457 contain more PFDD and stuff like this | |
def test_prudnikov_7(): | |
assert can_do([3], [6]) | |
h = S.Half | |
for n in [h, 3*h, 5*h, 7*h]: | |
assert can_do([-h], [n]) | |
for m in [-h, h, 1, 3*h, 2, 5*h, 3, 7*h, 4]: # HERE | |
for n in [-h, h, 3*h, 5*h, 7*h, 1, 2, 3, 4]: | |
assert can_do([m], [n]) | |
def test_prudnikov_8(): | |
h = S.Half | |
# 7.12.2 | |
for ai in [1, 2, 3]: | |
for bi in [1, 2, 3]: | |
for ci in range(1, ai + 1): | |
for di in [h, 1, 3*h, 2, 5*h, 3]: | |
assert can_do([ai, bi], [ci, di]) | |
for bi in [3*h, 5*h]: | |
for ci in [h, 1, 3*h, 2, 5*h, 3]: | |
for di in [1, 2, 3]: | |
assert can_do([ai, bi], [ci, di]) | |
for ai in [-h, h, 3*h, 5*h]: | |
for bi in [1, 2, 3]: | |
for ci in [h, 1, 3*h, 2, 5*h, 3]: | |
for di in [1, 2, 3]: | |
assert can_do([ai, bi], [ci, di]) | |
for bi in [h, 3*h, 5*h]: | |
for ci in [h, 3*h, 5*h, 3]: | |
for di in [h, 1, 3*h, 2, 5*h, 3]: | |
if ci <= bi: | |
assert can_do([ai, bi], [ci, di]) | |
def test_prudnikov_9(): | |
# 7.13.1 [we have a general formula ... so this is a bit pointless] | |
for i in range(9): | |
assert can_do([], [(S(i) + 1)/2]) | |
for i in range(5): | |
assert can_do([], [-(2*S(i) + 1)/2]) | |
def test_prudnikov_10(): | |
# 7.14.2 | |
h = S.Half | |
for p in [-h, h, 1, 3*h, 2, 5*h, 3, 7*h, 4]: | |
for m in [1, 2, 3, 4]: | |
for n in range(m, 5): | |
assert can_do([p], [m, n]) | |
for p in [1, 2, 3, 4]: | |
for n in [h, 3*h, 5*h, 7*h]: | |
for m in [1, 2, 3, 4]: | |
assert can_do([p], [n, m]) | |
for p in [3*h, 5*h, 7*h]: | |
for m in [h, 1, 2, 5*h, 3, 7*h, 4]: | |
assert can_do([p], [h, m]) | |
assert can_do([p], [3*h, m]) | |
for m in [h, 1, 2, 5*h, 3, 7*h, 4]: | |
assert can_do([7*h], [5*h, m]) | |
assert can_do([Rational(-1, 2)], [S.Half, S.Half]) # shine-integral shi | |
def test_prudnikov_11(): | |
# 7.15 | |
assert can_do([a, a + S.Half], [2*a, b, 2*a - b]) | |
assert can_do([a, a + S.Half], [Rational(3, 2), 2*a, 2*a - S.Half]) | |
assert can_do([Rational(1, 4), Rational(3, 4)], [S.Half, S.Half, 1]) | |
assert can_do([Rational(5, 4), Rational(3, 4)], [Rational(3, 2), S.Half, 2]) | |
assert can_do([Rational(5, 4), Rational(3, 4)], [Rational(3, 2), Rational(3, 2), 1]) | |
assert can_do([Rational(5, 4), Rational(7, 4)], [Rational(3, 2), Rational(5, 2), 2]) | |
assert can_do([1, 1], [Rational(3, 2), 2, 2]) # cosh-integral chi | |
def test_prudnikov_12(): | |
# 7.16 | |
assert can_do( | |
[], [a, a + S.Half, 2*a], False) # branches only agree for some z! | |
assert can_do([], [a, a + S.Half, 2*a + 1], False) # dito | |
assert can_do([], [S.Half, a, a + S.Half]) | |
assert can_do([], [Rational(3, 2), a, a + S.Half]) | |
assert can_do([], [Rational(1, 4), S.Half, Rational(3, 4)]) | |
assert can_do([], [S.Half, S.Half, 1]) | |
assert can_do([], [S.Half, Rational(3, 2), 1]) | |
assert can_do([], [Rational(3, 4), Rational(3, 2), Rational(5, 4)]) | |
assert can_do([], [1, 1, Rational(3, 2)]) | |
assert can_do([], [1, 2, Rational(3, 2)]) | |
assert can_do([], [1, Rational(3, 2), Rational(3, 2)]) | |
assert can_do([], [Rational(5, 4), Rational(3, 2), Rational(7, 4)]) | |
assert can_do([], [2, Rational(3, 2), Rational(3, 2)]) | |
def test_prudnikov_2F1(): | |
h = S.Half | |
# Elliptic integrals | |
for p in [-h, h]: | |
for m in [h, 3*h, 5*h, 7*h]: | |
for n in [1, 2, 3, 4]: | |
assert can_do([p, m], [n]) | |
def test_prudnikov_fail_2F1(): | |
assert can_do([a, b], [b + 1]) # incomplete beta function | |
assert can_do([-1, b], [c]) # Poly. also -2, -3 etc | |
# TODO polys | |
# Legendre functions: | |
assert can_do([a, b], [a + b + S.Half]) | |
assert can_do([a, b], [a + b - S.Half]) | |
assert can_do([a, b], [a + b + Rational(3, 2)]) | |
assert can_do([a, b], [(a + b + 1)/2]) | |
assert can_do([a, b], [(a + b)/2 + 1]) | |
assert can_do([a, b], [a - b + 1]) | |
assert can_do([a, b], [a - b + 2]) | |
assert can_do([a, b], [2*b]) | |
assert can_do([a, b], [S.Half]) | |
assert can_do([a, b], [Rational(3, 2)]) | |
assert can_do([a, 1 - a], [c]) | |
assert can_do([a, 2 - a], [c]) | |
assert can_do([a, 3 - a], [c]) | |
assert can_do([a, a + S.Half], [c]) | |
assert can_do([1, b], [c]) | |
assert can_do([1, b], [Rational(3, 2)]) | |
assert can_do([Rational(1, 4), Rational(3, 4)], [1]) | |
# PFDD | |
o = S.One | |
assert can_do([o/8, 1], [o/8*9]) | |
assert can_do([o/6, 1], [o/6*7]) | |
assert can_do([o/6, 1], [o/6*13]) | |
assert can_do([o/5, 1], [o/5*6]) | |
assert can_do([o/5, 1], [o/5*11]) | |
assert can_do([o/4, 1], [o/4*5]) | |
assert can_do([o/4, 1], [o/4*9]) | |
assert can_do([o/3, 1], [o/3*4]) | |
assert can_do([o/3, 1], [o/3*7]) | |
assert can_do([o/8*3, 1], [o/8*11]) | |
assert can_do([o/5*2, 1], [o/5*7]) | |
assert can_do([o/5*2, 1], [o/5*12]) | |
assert can_do([o/5*3, 1], [o/5*8]) | |
assert can_do([o/5*3, 1], [o/5*13]) | |
assert can_do([o/8*5, 1], [o/8*13]) | |
assert can_do([o/4*3, 1], [o/4*7]) | |
assert can_do([o/4*3, 1], [o/4*11]) | |
assert can_do([o/3*2, 1], [o/3*5]) | |
assert can_do([o/3*2, 1], [o/3*8]) | |
assert can_do([o/5*4, 1], [o/5*9]) | |
assert can_do([o/5*4, 1], [o/5*14]) | |
assert can_do([o/6*5, 1], [o/6*11]) | |
assert can_do([o/6*5, 1], [o/6*17]) | |
assert can_do([o/8*7, 1], [o/8*15]) | |
def test_prudnikov_fail_3F2(): | |
assert can_do([a, a + Rational(1, 3), a + Rational(2, 3)], [Rational(1, 3), Rational(2, 3)]) | |
assert can_do([a, a + Rational(1, 3), a + Rational(2, 3)], [Rational(2, 3), Rational(4, 3)]) | |
assert can_do([a, a + Rational(1, 3), a + Rational(2, 3)], [Rational(4, 3), Rational(5, 3)]) | |
# page 421 | |
assert can_do([a, a + Rational(1, 3), a + Rational(2, 3)], [a*Rational(3, 2), (3*a + 1)/2]) | |
# pages 422 ... | |
assert can_do([Rational(-1, 2), S.Half, S.Half], [1, 1]) # elliptic integrals | |
assert can_do([Rational(-1, 2), S.Half, 1], [Rational(3, 2), Rational(3, 2)]) | |
# TODO LOTS more | |
# PFDD | |
assert can_do([Rational(1, 8), Rational(3, 8), 1], [Rational(9, 8), Rational(11, 8)]) | |
assert can_do([Rational(1, 8), Rational(5, 8), 1], [Rational(9, 8), Rational(13, 8)]) | |
assert can_do([Rational(1, 8), Rational(7, 8), 1], [Rational(9, 8), Rational(15, 8)]) | |
assert can_do([Rational(1, 6), Rational(1, 3), 1], [Rational(7, 6), Rational(4, 3)]) | |
assert can_do([Rational(1, 6), Rational(2, 3), 1], [Rational(7, 6), Rational(5, 3)]) | |
assert can_do([Rational(1, 6), Rational(2, 3), 1], [Rational(5, 3), Rational(13, 6)]) | |
assert can_do([S.Half, 1, 1], [Rational(1, 4), Rational(3, 4)]) | |
# LOTS more | |
def test_prudnikov_fail_other(): | |
# 7.11.2 | |
# 7.12.1 | |
assert can_do([1, a], [b, 1 - 2*a + b]) # ??? | |
# 7.14.2 | |
assert can_do([Rational(-1, 2)], [S.Half, 1]) # struve | |
assert can_do([1], [S.Half, S.Half]) # struve | |
assert can_do([Rational(1, 4)], [S.Half, Rational(5, 4)]) # PFDD | |
assert can_do([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)]) # PFDD | |
assert can_do([1], [Rational(1, 4), Rational(3, 4)]) # PFDD | |
assert can_do([1], [Rational(3, 4), Rational(5, 4)]) # PFDD | |
assert can_do([1], [Rational(5, 4), Rational(7, 4)]) # PFDD | |
# TODO LOTS more | |
# 7.15.2 | |
assert can_do([S.Half, 1], [Rational(3, 4), Rational(5, 4), Rational(3, 2)]) # PFDD | |
assert can_do([S.Half, 1], [Rational(7, 4), Rational(5, 4), Rational(3, 2)]) # PFDD | |
# 7.16.1 | |
assert can_do([], [Rational(1, 3), S(2/3)]) # PFDD | |
assert can_do([], [Rational(2, 3), S(4/3)]) # PFDD | |
assert can_do([], [Rational(5, 3), S(4/3)]) # PFDD | |
# XXX this does not *evaluate* right?? | |
assert can_do([], [a, a + S.Half, 2*a - 1]) | |
def test_bug(): | |
h = hyper([-1, 1], [z], -1) | |
assert hyperexpand(h) == (z + 1)/z | |
def test_omgissue_203(): | |
h = hyper((-5, -3, -4), (-6, -6), 1) | |
assert hyperexpand(h) == Rational(1, 30) | |
h = hyper((-6, -7, -5), (-6, -6), 1) | |
assert hyperexpand(h) == Rational(-1, 6) | |