Spaces:
Sleeping
Sleeping
from functools import reduce | |
import itertools | |
from operator import add | |
from sympy.codegen.matrix_nodes import MatrixSolve | |
from sympy.core.add import Add | |
from sympy.core.containers import Tuple | |
from sympy.core.expr import UnevaluatedExpr | |
from sympy.core.function import Function | |
from sympy.core.mul import Mul | |
from sympy.core.power import Pow | |
from sympy.core.relational import Eq | |
from sympy.core.singleton import S | |
from sympy.core.symbol import (Symbol, symbols) | |
from sympy.core.sympify import sympify | |
from sympy.functions.elementary.exponential import exp | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.piecewise import Piecewise | |
from sympy.functions.elementary.trigonometric import (cos, sin) | |
from sympy.matrices.dense import Matrix | |
from sympy.matrices.expressions import Inverse, MatAdd, MatMul, Transpose | |
from sympy.polys.rootoftools import CRootOf | |
from sympy.series.order import O | |
from sympy.simplify.cse_main import cse | |
from sympy.simplify.simplify import signsimp | |
from sympy.tensor.indexed import (Idx, IndexedBase) | |
from sympy.core.function import count_ops | |
from sympy.simplify.cse_opts import sub_pre, sub_post | |
from sympy.functions.special.hyper import meijerg | |
from sympy.simplify import cse_main, cse_opts | |
from sympy.utilities.iterables import subsets | |
from sympy.testing.pytest import XFAIL, raises | |
from sympy.matrices import (MutableDenseMatrix, MutableSparseMatrix, | |
ImmutableDenseMatrix, ImmutableSparseMatrix) | |
from sympy.matrices.expressions import MatrixSymbol | |
w, x, y, z = symbols('w,x,y,z') | |
x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 = symbols('x:13') | |
def test_numbered_symbols(): | |
ns = cse_main.numbered_symbols(prefix='y') | |
assert list(itertools.islice( | |
ns, 0, 10)) == [Symbol('y%s' % i) for i in range(0, 10)] | |
ns = cse_main.numbered_symbols(prefix='y') | |
assert list(itertools.islice( | |
ns, 10, 20)) == [Symbol('y%s' % i) for i in range(10, 20)] | |
ns = cse_main.numbered_symbols() | |
assert list(itertools.islice( | |
ns, 0, 10)) == [Symbol('x%s' % i) for i in range(0, 10)] | |
# Dummy "optimization" functions for testing. | |
def opt1(expr): | |
return expr + y | |
def opt2(expr): | |
return expr*z | |
def test_preprocess_for_cse(): | |
assert cse_main.preprocess_for_cse(x, [(opt1, None)]) == x + y | |
assert cse_main.preprocess_for_cse(x, [(None, opt1)]) == x | |
assert cse_main.preprocess_for_cse(x, [(None, None)]) == x | |
assert cse_main.preprocess_for_cse(x, [(opt1, opt2)]) == x + y | |
assert cse_main.preprocess_for_cse( | |
x, [(opt1, None), (opt2, None)]) == (x + y)*z | |
def test_postprocess_for_cse(): | |
assert cse_main.postprocess_for_cse(x, [(opt1, None)]) == x | |
assert cse_main.postprocess_for_cse(x, [(None, opt1)]) == x + y | |
assert cse_main.postprocess_for_cse(x, [(None, None)]) == x | |
assert cse_main.postprocess_for_cse(x, [(opt1, opt2)]) == x*z | |
# Note the reverse order of application. | |
assert cse_main.postprocess_for_cse( | |
x, [(None, opt1), (None, opt2)]) == x*z + y | |
def test_cse_single(): | |
# Simple substitution. | |
e = Add(Pow(x + y, 2), sqrt(x + y)) | |
substs, reduced = cse([e]) | |
assert substs == [(x0, x + y)] | |
assert reduced == [sqrt(x0) + x0**2] | |
subst42, (red42,) = cse([42]) # issue_15082 | |
assert len(subst42) == 0 and red42 == 42 | |
subst_half, (red_half,) = cse([0.5]) | |
assert len(subst_half) == 0 and red_half == 0.5 | |
def test_cse_single2(): | |
# Simple substitution, test for being able to pass the expression directly | |
e = Add(Pow(x + y, 2), sqrt(x + y)) | |
substs, reduced = cse(e) | |
assert substs == [(x0, x + y)] | |
assert reduced == [sqrt(x0) + x0**2] | |
substs, reduced = cse(Matrix([[1]])) | |
assert isinstance(reduced[0], Matrix) | |
subst42, (red42,) = cse(42) # issue 15082 | |
assert len(subst42) == 0 and red42 == 42 | |
subst_half, (red_half,) = cse(0.5) # issue 15082 | |
assert len(subst_half) == 0 and red_half == 0.5 | |
def test_cse_not_possible(): | |
# No substitution possible. | |
e = Add(x, y) | |
substs, reduced = cse([e]) | |
assert substs == [] | |
assert reduced == [x + y] | |
# issue 6329 | |
eq = (meijerg((1, 2), (y, 4), (5,), [], x) + | |
meijerg((1, 3), (y, 4), (5,), [], x)) | |
assert cse(eq) == ([], [eq]) | |
def test_nested_substitution(): | |
# Substitution within a substitution. | |
e = Add(Pow(w*x + y, 2), sqrt(w*x + y)) | |
substs, reduced = cse([e]) | |
assert substs == [(x0, w*x + y)] | |
assert reduced == [sqrt(x0) + x0**2] | |
def test_subtraction_opt(): | |
# Make sure subtraction is optimized. | |
e = (x - y)*(z - y) + exp((x - y)*(z - y)) | |
substs, reduced = cse( | |
[e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)]) | |
assert substs == [(x0, (x - y)*(y - z))] | |
assert reduced == [-x0 + exp(-x0)] | |
e = -(x - y)*(z - y) + exp(-(x - y)*(z - y)) | |
substs, reduced = cse( | |
[e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)]) | |
assert substs == [(x0, (x - y)*(y - z))] | |
assert reduced == [x0 + exp(x0)] | |
# issue 4077 | |
n = -1 + 1/x | |
e = n/x/(-n)**2 - 1/n/x | |
assert cse(e, optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)]) == \ | |
([], [0]) | |
assert cse(((w + x + y + z)*(w - y - z))/(w + x)**3) == \ | |
([(x0, w + x), (x1, y + z)], [(w - x1)*(x0 + x1)/x0**3]) | |
def test_multiple_expressions(): | |
e1 = (x + y)*z | |
e2 = (x + y)*w | |
substs, reduced = cse([e1, e2]) | |
assert substs == [(x0, x + y)] | |
assert reduced == [x0*z, x0*w] | |
l = [w*x*y + z, w*y] | |
substs, reduced = cse(l) | |
rsubsts, _ = cse(reversed(l)) | |
assert substs == rsubsts | |
assert reduced == [z + x*x0, x0] | |
l = [w*x*y, w*x*y + z, w*y] | |
substs, reduced = cse(l) | |
rsubsts, _ = cse(reversed(l)) | |
assert substs == rsubsts | |
assert reduced == [x1, x1 + z, x0] | |
l = [(x - z)*(y - z), x - z, y - z] | |
substs, reduced = cse(l) | |
rsubsts, _ = cse(reversed(l)) | |
assert substs == [(x0, -z), (x1, x + x0), (x2, x0 + y)] | |
assert rsubsts == [(x0, -z), (x1, x0 + y), (x2, x + x0)] | |
assert reduced == [x1*x2, x1, x2] | |
l = [w*y + w + x + y + z, w*x*y] | |
assert cse(l) == ([(x0, w*y)], [w + x + x0 + y + z, x*x0]) | |
assert cse([x + y, x + y + z]) == ([(x0, x + y)], [x0, z + x0]) | |
assert cse([x + y, x + z]) == ([], [x + y, x + z]) | |
assert cse([x*y, z + x*y, x*y*z + 3]) == \ | |
([(x0, x*y)], [x0, z + x0, 3 + x0*z]) | |
# CSE of non-commutative Mul terms is disabled | |
def test_non_commutative_cse(): | |
A, B, C = symbols('A B C', commutative=False) | |
l = [A*B*C, A*C] | |
assert cse(l) == ([], l) | |
l = [A*B*C, A*B] | |
assert cse(l) == ([(x0, A*B)], [x0*C, x0]) | |
# Test if CSE of non-commutative Mul terms is disabled | |
def test_bypass_non_commutatives(): | |
A, B, C = symbols('A B C', commutative=False) | |
l = [A*B*C, A*C] | |
assert cse(l) == ([], l) | |
l = [A*B*C, A*B] | |
assert cse(l) == ([], l) | |
l = [B*C, A*B*C] | |
assert cse(l) == ([], l) | |
# CSE fails when replacing non-commutative sub-expressions | |
def test_non_commutative_order(): | |
A, B, C = symbols('A B C', commutative=False) | |
x0 = symbols('x0', commutative=False) | |
l = [B+C, A*(B+C)] | |
assert cse(l) == ([(x0, B+C)], [x0, A*x0]) | |
# Worked in gh-11232, but was reverted due to performance considerations | |
def test_issue_10228(): | |
assert cse([x*y**2 + x*y]) == ([(x0, x*y)], [x0*y + x0]) | |
assert cse([x + y, 2*x + y]) == ([(x0, x + y)], [x0, x + x0]) | |
assert cse((w + 2*x + y + z, w + x + 1)) == ( | |
[(x0, w + x)], [x0 + x + y + z, x0 + 1]) | |
assert cse(((w + x + y + z)*(w - x))/(w + x)) == ( | |
[(x0, w + x)], [(x0 + y + z)*(w - x)/x0]) | |
a, b, c, d, f, g, j, m = symbols('a, b, c, d, f, g, j, m') | |
exprs = (d*g**2*j*m, 4*a*f*g*m, a*b*c*f**2) | |
assert cse(exprs) == ( | |
[(x0, g*m), (x1, a*f)], [d*g*j*x0, 4*x0*x1, b*c*f*x1] | |
) | |
def test_powers(): | |
assert cse(x*y**2 + x*y) == ([(x0, x*y)], [x0*y + x0]) | |
def test_issue_4498(): | |
assert cse(w/(x - y) + z/(y - x), optimizations='basic') == \ | |
([], [(w - z)/(x - y)]) | |
def test_issue_4020(): | |
assert cse(x**5 + x**4 + x**3 + x**2, optimizations='basic') \ | |
== ([(x0, x**2)], [x0*(x**3 + x + x0 + 1)]) | |
def test_issue_4203(): | |
assert cse(sin(x**x)/x**x) == ([(x0, x**x)], [sin(x0)/x0]) | |
def test_issue_6263(): | |
e = Eq(x*(-x + 1) + x*(x - 1), 0) | |
assert cse(e, optimizations='basic') == ([], [True]) | |
def test_issue_25043(): | |
c = symbols("c") | |
x = symbols("x0", real=True) | |
cse_expr = cse(c*x**2 + c*(x**4 - x**2))[-1][-1] | |
free = cse_expr.free_symbols | |
assert len(free) == len({i.name for i in free}) | |
def test_dont_cse_tuples(): | |
from sympy.core.function import Subs | |
f = Function("f") | |
g = Function("g") | |
name_val, (expr,) = cse( | |
Subs(f(x, y), (x, y), (0, 1)) | |
+ Subs(g(x, y), (x, y), (0, 1))) | |
assert name_val == [] | |
assert expr == (Subs(f(x, y), (x, y), (0, 1)) | |
+ Subs(g(x, y), (x, y), (0, 1))) | |
name_val, (expr,) = cse( | |
Subs(f(x, y), (x, y), (0, x + y)) | |
+ Subs(g(x, y), (x, y), (0, x + y))) | |
assert name_val == [(x0, x + y)] | |
assert expr == Subs(f(x, y), (x, y), (0, x0)) + \ | |
Subs(g(x, y), (x, y), (0, x0)) | |
def test_pow_invpow(): | |
assert cse(1/x**2 + x**2) == \ | |
([(x0, x**2)], [x0 + 1/x0]) | |
assert cse(x**2 + (1 + 1/x**2)/x**2) == \ | |
([(x0, x**2), (x1, 1/x0)], [x0 + x1*(x1 + 1)]) | |
assert cse(1/x**2 + (1 + 1/x**2)*x**2) == \ | |
([(x0, x**2), (x1, 1/x0)], [x0*(x1 + 1) + x1]) | |
assert cse(cos(1/x**2) + sin(1/x**2)) == \ | |
([(x0, x**(-2))], [sin(x0) + cos(x0)]) | |
assert cse(cos(x**2) + sin(x**2)) == \ | |
([(x0, x**2)], [sin(x0) + cos(x0)]) | |
assert cse(y/(2 + x**2) + z/x**2/y) == \ | |
([(x0, x**2)], [y/(x0 + 2) + z/(x0*y)]) | |
assert cse(exp(x**2) + x**2*cos(1/x**2)) == \ | |
([(x0, x**2)], [x0*cos(1/x0) + exp(x0)]) | |
assert cse((1 + 1/x**2)/x**2) == \ | |
([(x0, x**(-2))], [x0*(x0 + 1)]) | |
assert cse(x**(2*y) + x**(-2*y)) == \ | |
([(x0, x**(2*y))], [x0 + 1/x0]) | |
def test_postprocess(): | |
eq = (x + 1 + exp((x + 1)/(y + 1)) + cos(y + 1)) | |
assert cse([eq, Eq(x, z + 1), z - 2, (z + 1)*(x + 1)], | |
postprocess=cse_main.cse_separate) == \ | |
[[(x0, y + 1), (x2, z + 1), (x, x2), (x1, x + 1)], | |
[x1 + exp(x1/x0) + cos(x0), z - 2, x1*x2]] | |
def test_issue_4499(): | |
# previously, this gave 16 constants | |
from sympy.abc import a, b | |
B = Function('B') | |
G = Function('G') | |
t = Tuple(* | |
(a, a + S.Half, 2*a, b, 2*a - b + 1, (sqrt(z)/2)**(-2*a + 1)*B(2*a - | |
b, sqrt(z))*B(b - 1, sqrt(z))*G(b)*G(2*a - b + 1), | |
sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b, | |
sqrt(z))*G(b)*G(2*a - b + 1), sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b - 1, | |
sqrt(z))*B(2*a - b + 1, sqrt(z))*G(b)*G(2*a - b + 1), | |
(sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b + 1, | |
sqrt(z))*G(b)*G(2*a - b + 1), 1, 0, S.Half, z/2, -b + 1, -2*a + b, | |
-2*a)) | |
c = cse(t) | |
ans = ( | |
[(x0, 2*a), (x1, -b + x0), (x2, x1 + 1), (x3, b - 1), (x4, sqrt(z)), | |
(x5, B(x3, x4)), (x6, (x4/2)**(1 - x0)*G(b)*G(x2)), (x7, x6*B(x1, x4)), | |
(x8, B(b, x4)), (x9, x6*B(x2, x4))], | |
[(a, a + S.Half, x0, b, x2, x5*x7, x4*x7*x8, x4*x5*x9, x8*x9, | |
1, 0, S.Half, z/2, -x3, -x1, -x0)]) | |
assert ans == c | |
def test_issue_6169(): | |
r = CRootOf(x**6 - 4*x**5 - 2, 1) | |
assert cse(r) == ([], [r]) | |
# and a check that the right thing is done with the new | |
# mechanism | |
assert sub_post(sub_pre((-x - y)*z - x - y)) == -z*(x + y) - x - y | |
def test_cse_Indexed(): | |
len_y = 5 | |
y = IndexedBase('y', shape=(len_y,)) | |
x = IndexedBase('x', shape=(len_y,)) | |
i = Idx('i', len_y-1) | |
expr1 = (y[i+1]-y[i])/(x[i+1]-x[i]) | |
expr2 = 1/(x[i+1]-x[i]) | |
replacements, reduced_exprs = cse([expr1, expr2]) | |
assert len(replacements) > 0 | |
def test_cse_MatrixSymbol(): | |
# MatrixSymbols have non-Basic args, so make sure that works | |
A = MatrixSymbol("A", 3, 3) | |
assert cse(A) == ([], [A]) | |
n = symbols('n', integer=True) | |
B = MatrixSymbol("B", n, n) | |
assert cse(B) == ([], [B]) | |
assert cse(A[0] * A[0]) == ([], [A[0]*A[0]]) | |
assert cse(A[0,0]*A[0,1] + A[0,0]*A[0,1]*A[0,2]) == ([(x0, A[0, 0]*A[0, 1])], [x0*A[0, 2] + x0]) | |
def test_cse_MatrixExpr(): | |
A = MatrixSymbol('A', 3, 3) | |
y = MatrixSymbol('y', 3, 1) | |
expr1 = (A.T*A).I * A * y | |
expr2 = (A.T*A) * A * y | |
replacements, reduced_exprs = cse([expr1, expr2]) | |
assert len(replacements) > 0 | |
replacements, reduced_exprs = cse([expr1 + expr2, expr1]) | |
assert replacements | |
replacements, reduced_exprs = cse([A**2, A + A**2]) | |
assert replacements | |
def test_Piecewise(): | |
f = Piecewise((-z + x*y, Eq(y, 0)), (-z - x*y, True)) | |
ans = cse(f) | |
actual_ans = ([(x0, x*y)], | |
[Piecewise((x0 - z, Eq(y, 0)), (-z - x0, True))]) | |
assert ans == actual_ans | |
def test_ignore_order_terms(): | |
eq = exp(x).series(x,0,3) + sin(y+x**3) - 1 | |
assert cse(eq) == ([], [sin(x**3 + y) + x + x**2/2 + O(x**3)]) | |
def test_name_conflict(): | |
z1 = x0 + y | |
z2 = x2 + x3 | |
l = [cos(z1) + z1, cos(z2) + z2, x0 + x2] | |
substs, reduced = cse(l) | |
assert [e.subs(reversed(substs)) for e in reduced] == l | |
def test_name_conflict_cust_symbols(): | |
z1 = x0 + y | |
z2 = x2 + x3 | |
l = [cos(z1) + z1, cos(z2) + z2, x0 + x2] | |
substs, reduced = cse(l, symbols("x:10")) | |
assert [e.subs(reversed(substs)) for e in reduced] == l | |
def test_symbols_exhausted_error(): | |
l = cos(x+y)+x+y+cos(w+y)+sin(w+y) | |
sym = [x, y, z] | |
with raises(ValueError): | |
cse(l, symbols=sym) | |
def test_issue_7840(): | |
# daveknippers' example | |
C393 = sympify( \ | |
'Piecewise((C391 - 1.65, C390 < 0.5), (Piecewise((C391 - 1.65, \ | |
C391 > 2.35), (C392, True)), True))' | |
) | |
C391 = sympify( \ | |
'Piecewise((2.05*C390**(-1.03), C390 < 0.5), (2.5*C390**(-0.625), True))' | |
) | |
C393 = C393.subs('C391',C391) | |
# simple substitution | |
sub = {} | |
sub['C390'] = 0.703451854 | |
sub['C392'] = 1.01417794 | |
ss_answer = C393.subs(sub) | |
# cse | |
substitutions,new_eqn = cse(C393) | |
for pair in substitutions: | |
sub[pair[0].name] = pair[1].subs(sub) | |
cse_answer = new_eqn[0].subs(sub) | |
# both methods should be the same | |
assert ss_answer == cse_answer | |
# GitRay's example | |
expr = sympify( | |
"Piecewise((Symbol('ON'), Equality(Symbol('mode'), Symbol('ON'))), \ | |
(Piecewise((Piecewise((Symbol('OFF'), StrictLessThan(Symbol('x'), \ | |
Symbol('threshold'))), (Symbol('ON'), true)), Equality(Symbol('mode'), \ | |
Symbol('AUTO'))), (Symbol('OFF'), true)), true))" | |
) | |
substitutions, new_eqn = cse(expr) | |
# this Piecewise should be exactly the same | |
assert new_eqn[0] == expr | |
# there should not be any replacements | |
assert len(substitutions) < 1 | |
def test_issue_8891(): | |
for cls in (MutableDenseMatrix, MutableSparseMatrix, | |
ImmutableDenseMatrix, ImmutableSparseMatrix): | |
m = cls(2, 2, [x + y, 0, 0, 0]) | |
res = cse([x + y, m]) | |
ans = ([(x0, x + y)], [x0, cls([[x0, 0], [0, 0]])]) | |
assert res == ans | |
assert isinstance(res[1][-1], cls) | |
def test_issue_11230(): | |
# a specific test that always failed | |
a, b, f, k, l, i = symbols('a b f k l i') | |
p = [a*b*f*k*l, a*i*k**2*l, f*i*k**2*l] | |
R, C = cse(p) | |
assert not any(i.is_Mul for a in C for i in a.args) | |
# random tests for the issue | |
from sympy.core.random import choice | |
from sympy.core.function import expand_mul | |
s = symbols('a:m') | |
# 35 Mul tests, none of which should ever fail | |
ex = [Mul(*[choice(s) for i in range(5)]) for i in range(7)] | |
for p in subsets(ex, 3): | |
p = list(p) | |
R, C = cse(p) | |
assert not any(i.is_Mul for a in C for i in a.args) | |
for ri in reversed(R): | |
for i in range(len(C)): | |
C[i] = C[i].subs(*ri) | |
assert p == C | |
# 35 Add tests, none of which should ever fail | |
ex = [Add(*[choice(s[:7]) for i in range(5)]) for i in range(7)] | |
for p in subsets(ex, 3): | |
p = list(p) | |
R, C = cse(p) | |
assert not any(i.is_Add for a in C for i in a.args) | |
for ri in reversed(R): | |
for i in range(len(C)): | |
C[i] = C[i].subs(*ri) | |
# use expand_mul to handle cases like this: | |
# p = [a + 2*b + 2*e, 2*b + c + 2*e, b + 2*c + 2*g] | |
# x0 = 2*(b + e) is identified giving a rebuilt p that | |
# is now `[a + 2*(b + e), c + 2*(b + e), b + 2*c + 2*g]` | |
assert p == [expand_mul(i) for i in C] | |
def test_issue_11577(): | |
def check(eq): | |
r, c = cse(eq) | |
assert eq.count_ops() >= \ | |
len(r) + sum(i[1].count_ops() for i in r) + \ | |
count_ops(c) | |
eq = x**5*y**2 + x**5*y + x**5 | |
assert cse(eq) == ( | |
[(x0, x**4), (x1, x*y)], [x**5 + x0*x1*y + x0*x1]) | |
# ([(x0, x**5*y)], [x0*y + x0 + x**5]) or | |
# ([(x0, x**5)], [x0*y**2 + x0*y + x0]) | |
check(eq) | |
eq = x**2/(y + 1)**2 + x/(y + 1) | |
assert cse(eq) == ( | |
[(x0, y + 1)], [x**2/x0**2 + x/x0]) | |
# ([(x0, x/(y + 1))], [x0**2 + x0]) | |
check(eq) | |
def test_hollow_rejection(): | |
eq = [x + 3, x + 4] | |
assert cse(eq) == ([], eq) | |
def test_cse_ignore(): | |
exprs = [exp(y)*(3*y + 3*sqrt(x+1)), exp(y)*(5*y + 5*sqrt(x+1))] | |
subst1, red1 = cse(exprs) | |
assert any(y in sub.free_symbols for _, sub in subst1), "cse failed to identify any term with y" | |
subst2, red2 = cse(exprs, ignore=(y,)) # y is not allowed in substitutions | |
assert not any(y in sub.free_symbols for _, sub in subst2), "Sub-expressions containing y must be ignored" | |
assert any(sub - sqrt(x + 1) == 0 for _, sub in subst2), "cse failed to identify sqrt(x + 1) as sub-expression" | |
def test_cse_ignore_issue_15002(): | |
l = [ | |
w*exp(x)*exp(-z), | |
exp(y)*exp(x)*exp(-z) | |
] | |
substs, reduced = cse(l, ignore=(x,)) | |
rl = [e.subs(reversed(substs)) for e in reduced] | |
assert rl == l | |
def test_cse_unevaluated(): | |
xp1 = UnevaluatedExpr(x + 1) | |
# This used to cause RecursionError | |
[(x0, ue)], [red] = cse([(-1 - xp1) / (1 - xp1)]) | |
if ue == xp1: | |
assert red == (-1 - x0) / (1 - x0) | |
elif ue == -xp1: | |
assert red == (-1 + x0) / (1 + x0) | |
else: | |
msg = f'Expected common subexpression {xp1} or {-xp1}, instead got {ue}' | |
assert False, msg | |
def test_cse__performance(): | |
nexprs, nterms = 3, 20 | |
x = symbols('x:%d' % nterms) | |
exprs = [ | |
reduce(add, [x[j]*(-1)**(i+j) for j in range(nterms)]) | |
for i in range(nexprs) | |
] | |
assert (exprs[0] + exprs[1]).simplify() == 0 | |
subst, red = cse(exprs) | |
assert len(subst) > 0, "exprs[0] == -exprs[2], i.e. a CSE" | |
for i, e in enumerate(red): | |
assert (e.subs(reversed(subst)) - exprs[i]).simplify() == 0 | |
def test_issue_12070(): | |
exprs = [x + y, 2 + x + y, x + y + z, 3 + x + y + z] | |
subst, red = cse(exprs) | |
assert 6 >= (len(subst) + sum(v.count_ops() for k, v in subst) + | |
count_ops(red)) | |
def test_issue_13000(): | |
eq = x/(-4*x**2 + y**2) | |
cse_eq = cse(eq)[1][0] | |
assert cse_eq == eq | |
def test_issue_18203(): | |
eq = CRootOf(x**5 + 11*x - 2, 0) + CRootOf(x**5 + 11*x - 2, 1) | |
assert cse(eq) == ([], [eq]) | |
def test_unevaluated_mul(): | |
eq = Mul(x + y, x + y, evaluate=False) | |
assert cse(eq) == ([(x0, x + y)], [x0**2]) | |
def test_cse_release_variables(): | |
from sympy.simplify.cse_main import cse_release_variables | |
_0, _1, _2, _3, _4 = symbols('_:5') | |
eqs = [(x + y - 1)**2, x, | |
x + y, (x + y)/(2*x + 1) + (x + y - 1)**2, | |
(2*x + 1)**(x + y)] | |
r, e = cse(eqs, postprocess=cse_release_variables) | |
# this can change in keeping with the intention of the function | |
assert r, e == ([ | |
(x0, x + y), (x1, (x0 - 1)**2), (x2, 2*x + 1), | |
(_3, x0/x2 + x1), (_4, x2**x0), (x2, None), (_0, x1), | |
(x1, None), (_2, x0), (x0, None), (_1, x)], (_0, _1, _2, _3, _4)) | |
r.reverse() | |
r = [(s, v) for s, v in r if v is not None] | |
assert eqs == [i.subs(r) for i in e] | |
def test_cse_list(): | |
_cse = lambda x: cse(x, list=False) | |
assert _cse(x) == ([], x) | |
assert _cse('x') == ([], 'x') | |
it = [x] | |
for c in (list, tuple, set): | |
assert _cse(c(it)) == ([], c(it)) | |
#Tuple works different from tuple: | |
assert _cse(Tuple(*it)) == ([], Tuple(*it)) | |
d = {x: 1} | |
assert _cse(d) == ([], d) | |
def test_issue_18991(): | |
A = MatrixSymbol('A', 2, 2) | |
assert signsimp(-A * A - A) == -A * A - A | |
def test_unevaluated_Mul(): | |
m = [Mul(1, 2, evaluate=False)] | |
assert cse(m) == ([], m) | |
def test_cse_matrix_expression_inverse(): | |
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2) | |
x = Inverse(A) | |
cse_expr = cse(x) | |
assert cse_expr == ([], [Inverse(A)]) | |
def test_cse_matrix_expression_matmul_inverse(): | |
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2) | |
b = ImmutableDenseMatrix(symbols('b:2')) | |
x = MatMul(Inverse(A), b) | |
cse_expr = cse(x) | |
assert cse_expr == ([], [x]) | |
def test_cse_matrix_negate_matrix(): | |
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2) | |
x = MatMul(S.NegativeOne, A) | |
cse_expr = cse(x) | |
assert cse_expr == ([], [x]) | |
def test_cse_matrix_negate_matmul_not_extracted(): | |
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2) | |
B = ImmutableDenseMatrix(symbols('B:4')).reshape(2, 2) | |
x = MatMul(S.NegativeOne, A, B) | |
cse_expr = cse(x) | |
assert cse_expr == ([], [x]) | |
# No simplification rule for nested associative operations | |
def test_cse_matrix_nested_matmul_collapsed(): | |
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2) | |
B = ImmutableDenseMatrix(symbols('B:4')).reshape(2, 2) | |
x = MatMul(S.NegativeOne, MatMul(A, B)) | |
cse_expr = cse(x) | |
assert cse_expr == ([], [MatMul(S.NegativeOne, A, B)]) | |
def test_cse_matrix_optimize_out_single_argument_mul(): | |
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2) | |
x = MatMul(MatMul(MatMul(A))) | |
cse_expr = cse(x) | |
assert cse_expr == ([], [A]) | |
# Multiple simplification passed not supported in CSE | |
def test_cse_matrix_optimize_out_single_argument_mul_combined(): | |
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2) | |
x = MatAdd(MatMul(MatMul(MatMul(A))), MatMul(MatMul(A)), MatMul(A), A) | |
cse_expr = cse(x) | |
assert cse_expr == ([], [MatMul(4, A)]) | |
def test_cse_matrix_optimize_out_single_argument_add(): | |
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2) | |
x = MatAdd(MatAdd(MatAdd(MatAdd(A)))) | |
cse_expr = cse(x) | |
assert cse_expr == ([], [A]) | |
# Multiple simplification passed not supported in CSE | |
def test_cse_matrix_optimize_out_single_argument_add_combined(): | |
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2) | |
x = MatMul(MatAdd(MatAdd(MatAdd(A))), MatAdd(MatAdd(A)), MatAdd(A), A) | |
cse_expr = cse(x) | |
assert cse_expr == ([], [MatMul(4, A)]) | |
def test_cse_matrix_expression_matrix_solve(): | |
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2) | |
b = ImmutableDenseMatrix(symbols('b:2')) | |
x = MatrixSolve(A, b) | |
cse_expr = cse(x) | |
assert cse_expr == ([], [x]) | |
def test_cse_matrix_matrix_expression(): | |
X = ImmutableDenseMatrix(symbols('X:4')).reshape(2, 2) | |
y = ImmutableDenseMatrix(symbols('y:2')) | |
b = MatMul(Inverse(MatMul(Transpose(X), X)), Transpose(X), y) | |
cse_expr = cse(b) | |
x0 = MatrixSymbol('x0', 2, 2) | |
reduced_expr_expected = MatMul(Inverse(MatMul(x0, X)), x0, y) | |
assert cse_expr == ([(x0, Transpose(X))], [reduced_expr_expected]) | |
def test_cse_matrix_kalman_filter(): | |
"""Kalman Filter example from Matthew Rocklin's SciPy 2013 talk. | |
Talk titled: "Matrix Expressions and BLAS/LAPACK; SciPy 2013 Presentation" | |
Video: https://pyvideo.org/scipy-2013/matrix-expressions-and-blaslapack-scipy-2013-pr.html | |
Notes | |
===== | |
Equations are: | |
new_mu = mu + Sigma*H.T * (R + H*Sigma*H.T).I * (H*mu - data) | |
= MatAdd(mu, MatMul(Sigma, Transpose(H), Inverse(MatAdd(R, MatMul(H, Sigma, Transpose(H)))), MatAdd(MatMul(H, mu), MatMul(S.NegativeOne, data)))) | |
new_Sigma = Sigma - Sigma*H.T * (R + H*Sigma*H.T).I * H * Sigma | |
= MatAdd(Sigma, MatMul(S.NegativeOne, Sigma, Transpose(H)), Inverse(MatAdd(R, MatMul(H*Sigma*Transpose(H)))), H, Sigma)) | |
""" | |
N = 2 | |
mu = ImmutableDenseMatrix(symbols(f'mu:{N}')) | |
Sigma = ImmutableDenseMatrix(symbols(f'Sigma:{N * N}')).reshape(N, N) | |
H = ImmutableDenseMatrix(symbols(f'H:{N * N}')).reshape(N, N) | |
R = ImmutableDenseMatrix(symbols(f'R:{N * N}')).reshape(N, N) | |
data = ImmutableDenseMatrix(symbols(f'data:{N}')) | |
new_mu = MatAdd(mu, MatMul(Sigma, Transpose(H), Inverse(MatAdd(R, MatMul(H, Sigma, Transpose(H)))), MatAdd(MatMul(H, mu), MatMul(S.NegativeOne, data)))) | |
new_Sigma = MatAdd(Sigma, MatMul(S.NegativeOne, Sigma, Transpose(H), Inverse(MatAdd(R, MatMul(H, Sigma, Transpose(H)))), H, Sigma)) | |
cse_expr = cse([new_mu, new_Sigma]) | |
x0 = MatrixSymbol('x0', N, N) | |
x1 = MatrixSymbol('x1', N, N) | |
replacements_expected = [ | |
(x0, Transpose(H)), | |
(x1, Inverse(MatAdd(R, MatMul(H, Sigma, x0)))), | |
] | |
reduced_exprs_expected = [ | |
MatAdd(mu, MatMul(Sigma, x0, x1, MatAdd(MatMul(H, mu), MatMul(S.NegativeOne, data)))), | |
MatAdd(Sigma, MatMul(S.NegativeOne, Sigma, x0, x1, H, Sigma)), | |
] | |
assert cse_expr == (replacements_expected, reduced_exprs_expected) | |