Spaces:
Sleeping
Sleeping
from itertools import combinations_with_replacement | |
from sympy.core import symbols, Add, Dummy | |
from sympy.core.numbers import Rational | |
from sympy.polys import cancel, ComputationFailed, parallel_poly_from_expr, reduced, Poly | |
from sympy.polys.monomials import Monomial, monomial_div | |
from sympy.polys.polyerrors import DomainError, PolificationFailed | |
from sympy.utilities.misc import debug, debugf | |
def ratsimp(expr): | |
""" | |
Put an expression over a common denominator, cancel and reduce. | |
Examples | |
======== | |
>>> from sympy import ratsimp | |
>>> from sympy.abc import x, y | |
>>> ratsimp(1/x + 1/y) | |
(x + y)/(x*y) | |
""" | |
f, g = cancel(expr).as_numer_denom() | |
try: | |
Q, r = reduced(f, [g], field=True, expand=False) | |
except ComputationFailed: | |
return f/g | |
return Add(*Q) + cancel(r/g) | |
def ratsimpmodprime(expr, G, *gens, quick=True, polynomial=False, **args): | |
""" | |
Simplifies a rational expression ``expr`` modulo the prime ideal | |
generated by ``G``. ``G`` should be a Groebner basis of the | |
ideal. | |
Examples | |
======== | |
>>> from sympy.simplify.ratsimp import ratsimpmodprime | |
>>> from sympy.abc import x, y | |
>>> eq = (x + y**5 + y)/(x - y) | |
>>> ratsimpmodprime(eq, [x*y**5 - x - y], x, y, order='lex') | |
(-x**2 - x*y - x - y)/(-x**2 + x*y) | |
If ``polynomial`` is ``False``, the algorithm computes a rational | |
simplification which minimizes the sum of the total degrees of | |
the numerator and the denominator. | |
If ``polynomial`` is ``True``, this function just brings numerator and | |
denominator into a canonical form. This is much faster, but has | |
potentially worse results. | |
References | |
========== | |
.. [1] M. Monagan, R. Pearce, Rational Simplification Modulo a Polynomial | |
Ideal, https://dl.acm.org/doi/pdf/10.1145/1145768.1145809 | |
(specifically, the second algorithm) | |
""" | |
from sympy.solvers.solvers import solve | |
debug('ratsimpmodprime', expr) | |
# usual preparation of polynomials: | |
num, denom = cancel(expr).as_numer_denom() | |
try: | |
polys, opt = parallel_poly_from_expr([num, denom] + G, *gens, **args) | |
except PolificationFailed: | |
return expr | |
domain = opt.domain | |
if domain.has_assoc_Field: | |
opt.domain = domain.get_field() | |
else: | |
raise DomainError( | |
"Cannot compute rational simplification over %s" % domain) | |
# compute only once | |
leading_monomials = [g.LM(opt.order) for g in polys[2:]] | |
tested = set() | |
def staircase(n): | |
""" | |
Compute all monomials with degree less than ``n`` that are | |
not divisible by any element of ``leading_monomials``. | |
""" | |
if n == 0: | |
return [1] | |
S = [] | |
for mi in combinations_with_replacement(range(len(opt.gens)), n): | |
m = [0]*len(opt.gens) | |
for i in mi: | |
m[i] += 1 | |
if all(monomial_div(m, lmg) is None for lmg in | |
leading_monomials): | |
S.append(m) | |
return [Monomial(s).as_expr(*opt.gens) for s in S] + staircase(n - 1) | |
def _ratsimpmodprime(a, b, allsol, N=0, D=0): | |
r""" | |
Computes a rational simplification of ``a/b`` which minimizes | |
the sum of the total degrees of the numerator and the denominator. | |
Explanation | |
=========== | |
The algorithm proceeds by looking at ``a * d - b * c`` modulo | |
the ideal generated by ``G`` for some ``c`` and ``d`` with degree | |
less than ``a`` and ``b`` respectively. | |
The coefficients of ``c`` and ``d`` are indeterminates and thus | |
the coefficients of the normalform of ``a * d - b * c`` are | |
linear polynomials in these indeterminates. | |
If these linear polynomials, considered as system of | |
equations, have a nontrivial solution, then `\frac{a}{b} | |
\equiv \frac{c}{d}` modulo the ideal generated by ``G``. So, | |
by construction, the degree of ``c`` and ``d`` is less than | |
the degree of ``a`` and ``b``, so a simpler representation | |
has been found. | |
After a simpler representation has been found, the algorithm | |
tries to reduce the degree of the numerator and denominator | |
and returns the result afterwards. | |
As an extension, if quick=False, we look at all possible degrees such | |
that the total degree is less than *or equal to* the best current | |
solution. We retain a list of all solutions of minimal degree, and try | |
to find the best one at the end. | |
""" | |
c, d = a, b | |
steps = 0 | |
maxdeg = a.total_degree() + b.total_degree() | |
if quick: | |
bound = maxdeg - 1 | |
else: | |
bound = maxdeg | |
while N + D <= bound: | |
if (N, D) in tested: | |
break | |
tested.add((N, D)) | |
M1 = staircase(N) | |
M2 = staircase(D) | |
debugf('%s / %s: %s, %s', (N, D, M1, M2)) | |
Cs = symbols("c:%d" % len(M1), cls=Dummy) | |
Ds = symbols("d:%d" % len(M2), cls=Dummy) | |
ng = Cs + Ds | |
c_hat = Poly( | |
sum(Cs[i] * M1[i] for i in range(len(M1))), opt.gens + ng) | |
d_hat = Poly( | |
sum(Ds[i] * M2[i] for i in range(len(M2))), opt.gens + ng) | |
r = reduced(a * d_hat - b * c_hat, G, opt.gens + ng, | |
order=opt.order, polys=True)[1] | |
S = Poly(r, gens=opt.gens).coeffs() | |
sol = solve(S, Cs + Ds, particular=True, quick=True) | |
if sol and not all(s == 0 for s in sol.values()): | |
c = c_hat.subs(sol) | |
d = d_hat.subs(sol) | |
# The "free" variables occurring before as parameters | |
# might still be in the substituted c, d, so set them | |
# to the value chosen before: | |
c = c.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds)))))) | |
d = d.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds)))))) | |
c = Poly(c, opt.gens) | |
d = Poly(d, opt.gens) | |
if d == 0: | |
raise ValueError('Ideal not prime?') | |
allsol.append((c_hat, d_hat, S, Cs + Ds)) | |
if N + D != maxdeg: | |
allsol = [allsol[-1]] | |
break | |
steps += 1 | |
N += 1 | |
D += 1 | |
if steps > 0: | |
c, d, allsol = _ratsimpmodprime(c, d, allsol, N, D - steps) | |
c, d, allsol = _ratsimpmodprime(c, d, allsol, N - steps, D) | |
return c, d, allsol | |
# preprocessing. this improves performance a bit when deg(num) | |
# and deg(denom) are large: | |
num = reduced(num, G, opt.gens, order=opt.order)[1] | |
denom = reduced(denom, G, opt.gens, order=opt.order)[1] | |
if polynomial: | |
return (num/denom).cancel() | |
c, d, allsol = _ratsimpmodprime( | |
Poly(num, opt.gens, domain=opt.domain), Poly(denom, opt.gens, domain=opt.domain), []) | |
if not quick and allsol: | |
debugf('Looking for best minimal solution. Got: %s', len(allsol)) | |
newsol = [] | |
for c_hat, d_hat, S, ng in allsol: | |
sol = solve(S, ng, particular=True, quick=False) | |
# all values of sol should be numbers; if not, solve is broken | |
newsol.append((c_hat.subs(sol), d_hat.subs(sol))) | |
c, d = min(newsol, key=lambda x: len(x[0].terms()) + len(x[1].terms())) | |
if not domain.is_Field: | |
cn, c = c.clear_denoms(convert=True) | |
dn, d = d.clear_denoms(convert=True) | |
r = Rational(cn, dn) | |
else: | |
r = Rational(1) | |
return (c*r.q)/(d*r.p) | |