Spaces:
Sleeping
Sleeping
from itertools import product | |
from sympy.concrete.summations import Sum | |
from sympy.core.function import (Function, diff) | |
from sympy.core import EulerGamma, GoldenRatio | |
from sympy.core.mod import Mod | |
from sympy.core.numbers import (E, I, Rational, oo, pi, zoo) | |
from sympy.core.singleton import S | |
from sympy.core.symbol import (Symbol, symbols) | |
from sympy.functions.combinatorial.numbers import fibonacci | |
from sympy.functions.combinatorial.factorials import (binomial, factorial, subfactorial) | |
from sympy.functions.elementary.complexes import (Abs, re, sign) | |
from sympy.functions.elementary.exponential import (LambertW, exp, log) | |
from sympy.functions.elementary.hyperbolic import (atanh, asinh, acosh, acoth, acsch, asech, tanh, sinh) | |
from sympy.functions.elementary.integers import (ceiling, floor, frac) | |
from sympy.functions.elementary.miscellaneous import (cbrt, real_root, sqrt) | |
from sympy.functions.elementary.piecewise import Piecewise | |
from sympy.functions.elementary.trigonometric import (acos, acot, acsc, asec, asin, | |
atan, cos, cot, csc, sec, sin, tan) | |
from sympy.functions.special.bessel import (besseli, bessely, besselj, besselk) | |
from sympy.functions.special.error_functions import (Ei, erf, erfc, erfi, fresnelc, fresnels) | |
from sympy.functions.special.gamma_functions import (digamma, gamma, uppergamma) | |
from sympy.functions.special.hyper import meijerg | |
from sympy.integrals.integrals import (Integral, integrate) | |
from sympy.series.limits import (Limit, limit) | |
from sympy.simplify.simplify import (logcombine, simplify) | |
from sympy.simplify.hyperexpand import hyperexpand | |
from sympy.calculus.accumulationbounds import AccumBounds | |
from sympy.core.mul import Mul | |
from sympy.series.limits import heuristics | |
from sympy.series.order import Order | |
from sympy.testing.pytest import XFAIL, raises | |
from sympy import elliptic_e, elliptic_k | |
from sympy.abc import x, y, z, k | |
n = Symbol('n', integer=True, positive=True) | |
def test_basic1(): | |
assert limit(x, x, oo) is oo | |
assert limit(x, x, -oo) is -oo | |
assert limit(-x, x, oo) is -oo | |
assert limit(x**2, x, -oo) is oo | |
assert limit(-x**2, x, oo) is -oo | |
assert limit(x*log(x), x, 0, dir="+") == 0 | |
assert limit(1/x, x, oo) == 0 | |
assert limit(exp(x), x, oo) is oo | |
assert limit(-exp(x), x, oo) is -oo | |
assert limit(exp(x)/x, x, oo) is oo | |
assert limit(1/x - exp(-x), x, oo) == 0 | |
assert limit(x + 1/x, x, oo) is oo | |
assert limit(x - x**2, x, oo) is -oo | |
assert limit((1 + x)**(1 + sqrt(2)), x, 0) == 1 | |
assert limit((1 + x)**oo, x, 0) == Limit((x + 1)**oo, x, 0) | |
assert limit((1 + x)**oo, x, 0, dir='-') == Limit((x + 1)**oo, x, 0, dir='-') | |
assert limit((1 + x + y)**oo, x, 0, dir='-') == Limit((1 + x + y)**oo, x, 0, dir='-') | |
assert limit(y/x/log(x), x, 0) == -oo*sign(y) | |
assert limit(cos(x + y)/x, x, 0) == sign(cos(y))*oo | |
assert limit(gamma(1/x + 3), x, oo) == 2 | |
assert limit(S.NaN, x, -oo) is S.NaN | |
assert limit(Order(2)*x, x, S.NaN) is S.NaN | |
assert limit(1/(x - 1), x, 1, dir="+") is oo | |
assert limit(1/(x - 1), x, 1, dir="-") is -oo | |
assert limit(1/(5 - x)**3, x, 5, dir="+") is -oo | |
assert limit(1/(5 - x)**3, x, 5, dir="-") is oo | |
assert limit(1/sin(x), x, pi, dir="+") is -oo | |
assert limit(1/sin(x), x, pi, dir="-") is oo | |
assert limit(1/cos(x), x, pi/2, dir="+") is -oo | |
assert limit(1/cos(x), x, pi/2, dir="-") is oo | |
assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="+") is oo | |
assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="-") is -oo | |
assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="+") is -oo | |
assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="-") is oo | |
assert limit(tan(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity) | |
assert limit(cot(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity) | |
assert limit(sec(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity) | |
assert limit(csc(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity) | |
# test bi-directional limits | |
assert limit(sin(x)/x, x, 0, dir="+-") == 1 | |
assert limit(x**2, x, 0, dir="+-") == 0 | |
assert limit(1/x**2, x, 0, dir="+-") is oo | |
# test failing bi-directional limits | |
assert limit(1/x, x, 0, dir="+-") is zoo | |
# approaching 0 | |
# from dir="+" | |
assert limit(1 + 1/x, x, 0) is oo | |
# from dir='-' | |
# Add | |
assert limit(1 + 1/x, x, 0, dir='-') is -oo | |
# Pow | |
assert limit(x**(-2), x, 0, dir='-') is oo | |
assert limit(x**(-3), x, 0, dir='-') is -oo | |
assert limit(1/sqrt(x), x, 0, dir='-') == (-oo)*I | |
assert limit(x**2, x, 0, dir='-') == 0 | |
assert limit(sqrt(x), x, 0, dir='-') == 0 | |
assert limit(x**-pi, x, 0, dir='-') == -oo*(-1)**(1 - pi) | |
assert limit((1 + cos(x))**oo, x, 0) == Limit((cos(x) + 1)**oo, x, 0) | |
# test pull request 22491 | |
assert limit(1/asin(x), x, 0, dir = '+') == oo | |
assert limit(1/asin(x), x, 0, dir = '-') == -oo | |
assert limit(1/sinh(x), x, 0, dir = '+') == oo | |
assert limit(1/sinh(x), x, 0, dir = '-') == -oo | |
assert limit(log(1/x) + 1/sin(x), x, 0, dir = '+') == oo | |
assert limit(log(1/x) + 1/x, x, 0, dir = '+') == oo | |
def test_basic2(): | |
assert limit(x**x, x, 0, dir="+") == 1 | |
assert limit((exp(x) - 1)/x, x, 0) == 1 | |
assert limit(1 + 1/x, x, oo) == 1 | |
assert limit(-exp(1/x), x, oo) == -1 | |
assert limit(x + exp(-x), x, oo) is oo | |
assert limit(x + exp(-x**2), x, oo) is oo | |
assert limit(x + exp(-exp(x)), x, oo) is oo | |
assert limit(13 + 1/x - exp(-x), x, oo) == 13 | |
def test_basic3(): | |
assert limit(1/x, x, 0, dir="+") is oo | |
assert limit(1/x, x, 0, dir="-") is -oo | |
def test_basic4(): | |
assert limit(2*x + y*x, x, 0) == 0 | |
assert limit(2*x + y*x, x, 1) == 2 + y | |
assert limit(2*x**8 + y*x**(-3), x, -2) == 512 - y/8 | |
assert limit(sqrt(x + 1) - sqrt(x), x, oo) == 0 | |
assert integrate(1/(x**3 + 1), (x, 0, oo)) == 2*pi*sqrt(3)/9 | |
def test_log(): | |
# https://github.com/sympy/sympy/issues/21598 | |
a, b, c = symbols('a b c', positive=True) | |
A = log(a/b) - (log(a) - log(b)) | |
assert A.limit(a, oo) == 0 | |
assert (A * c).limit(a, oo) == 0 | |
tau, x = symbols('tau x', positive=True) | |
# The value of manualintegrate in the issue | |
expr = tau**2*((tau - 1)*(tau + 1)*log(x + 1)/(tau**2 + 1)**2 + 1/((tau**2\ | |
+ 1)*(x + 1)) - (-2*tau*atan(x/tau) + (tau**2/2 - 1/2)*log(tau**2\ | |
+ x**2))/(tau**2 + 1)**2) | |
assert limit(expr, x, oo) == pi*tau**3/(tau**2 + 1)**2 | |
def test_piecewise(): | |
# https://github.com/sympy/sympy/issues/18363 | |
assert limit((real_root(x - 6, 3) + 2)/(x + 2), x, -2, '+') == Rational(1, 12) | |
def test_piecewise2(): | |
func1 = 2*sqrt(x)*Piecewise(((4*x - 2)/Abs(sqrt(4 - 4*(2*x - 1)**2)), 4*x - 2\ | |
>= 0), ((2 - 4*x)/Abs(sqrt(4 - 4*(2*x - 1)**2)), True)) | |
func2 = Piecewise((x**2/2, x <= 0.5), (x/2 - 0.125, True)) | |
func3 = Piecewise(((x - 9) / 5, x < -1), ((x - 9) / 5, x > 4), (sqrt(Abs(x - 3)), True)) | |
assert limit(func1, x, 0) == 1 | |
assert limit(func2, x, 0) == 0 | |
assert limit(func3, x, -1) == 2 | |
def test_basic5(): | |
class my(Function): | |
def eval(cls, arg): | |
if arg is S.Infinity: | |
return S.NaN | |
assert limit(my(x), x, oo) == Limit(my(x), x, oo) | |
def test_issue_3885(): | |
assert limit(x*y + x*z, z, 2) == x*y + 2*x | |
def test_Limit(): | |
assert Limit(sin(x)/x, x, 0) != 1 | |
assert Limit(sin(x)/x, x, 0).doit() == 1 | |
assert Limit(x, x, 0, dir='+-').args == (x, x, 0, Symbol('+-')) | |
def test_floor(): | |
assert limit(floor(x), x, -2, "+") == -2 | |
assert limit(floor(x), x, -2, "-") == -3 | |
assert limit(floor(x), x, -1, "+") == -1 | |
assert limit(floor(x), x, -1, "-") == -2 | |
assert limit(floor(x), x, 0, "+") == 0 | |
assert limit(floor(x), x, 0, "-") == -1 | |
assert limit(floor(x), x, 1, "+") == 1 | |
assert limit(floor(x), x, 1, "-") == 0 | |
assert limit(floor(x), x, 2, "+") == 2 | |
assert limit(floor(x), x, 2, "-") == 1 | |
assert limit(floor(x), x, 248, "+") == 248 | |
assert limit(floor(x), x, 248, "-") == 247 | |
# https://github.com/sympy/sympy/issues/14478 | |
assert limit(x*floor(3/x)/2, x, 0, '+') == Rational(3, 2) | |
assert limit(floor(x + 1/2) - floor(x), x, oo) == AccumBounds(-S.Half, S(3)/2) | |
# test issue 9158 | |
assert limit(floor(atan(x)), x, oo) == 1 | |
assert limit(floor(atan(x)), x, -oo) == -2 | |
assert limit(ceiling(atan(x)), x, oo) == 2 | |
assert limit(ceiling(atan(x)), x, -oo) == -1 | |
def test_floor_requires_robust_assumptions(): | |
assert limit(floor(sin(x)), x, 0, "+") == 0 | |
assert limit(floor(sin(x)), x, 0, "-") == -1 | |
assert limit(floor(cos(x)), x, 0, "+") == 0 | |
assert limit(floor(cos(x)), x, 0, "-") == 0 | |
assert limit(floor(5 + sin(x)), x, 0, "+") == 5 | |
assert limit(floor(5 + sin(x)), x, 0, "-") == 4 | |
assert limit(floor(5 + cos(x)), x, 0, "+") == 5 | |
assert limit(floor(5 + cos(x)), x, 0, "-") == 5 | |
def test_ceiling(): | |
assert limit(ceiling(x), x, -2, "+") == -1 | |
assert limit(ceiling(x), x, -2, "-") == -2 | |
assert limit(ceiling(x), x, -1, "+") == 0 | |
assert limit(ceiling(x), x, -1, "-") == -1 | |
assert limit(ceiling(x), x, 0, "+") == 1 | |
assert limit(ceiling(x), x, 0, "-") == 0 | |
assert limit(ceiling(x), x, 1, "+") == 2 | |
assert limit(ceiling(x), x, 1, "-") == 1 | |
assert limit(ceiling(x), x, 2, "+") == 3 | |
assert limit(ceiling(x), x, 2, "-") == 2 | |
assert limit(ceiling(x), x, 248, "+") == 249 | |
assert limit(ceiling(x), x, 248, "-") == 248 | |
# https://github.com/sympy/sympy/issues/14478 | |
assert limit(x*ceiling(3/x)/2, x, 0, '+') == Rational(3, 2) | |
assert limit(ceiling(x + 1/2) - ceiling(x), x, oo) == AccumBounds(-S.Half, S(3)/2) | |
def test_ceiling_requires_robust_assumptions(): | |
assert limit(ceiling(sin(x)), x, 0, "+") == 1 | |
assert limit(ceiling(sin(x)), x, 0, "-") == 0 | |
assert limit(ceiling(cos(x)), x, 0, "+") == 1 | |
assert limit(ceiling(cos(x)), x, 0, "-") == 1 | |
assert limit(ceiling(5 + sin(x)), x, 0, "+") == 6 | |
assert limit(ceiling(5 + sin(x)), x, 0, "-") == 5 | |
assert limit(ceiling(5 + cos(x)), x, 0, "+") == 6 | |
assert limit(ceiling(5 + cos(x)), x, 0, "-") == 6 | |
def test_frac(): | |
assert limit(frac(x), x, oo) == AccumBounds(0, 1) | |
assert limit(frac(x)**(1/x), x, oo) == AccumBounds(0, 1) | |
assert limit(frac(x)**(1/x), x, -oo) == AccumBounds(1, oo) | |
assert limit(frac(x)**x, x, oo) == AccumBounds(0, oo) # wolfram gives (0, 1) | |
assert limit(frac(sin(x)), x, 0, "+") == 0 | |
assert limit(frac(sin(x)), x, 0, "-") == 1 | |
assert limit(frac(cos(x)), x, 0, "+-") == 1 | |
assert limit(frac(x**2), x, 0, "+-") == 0 | |
raises(ValueError, lambda: limit(frac(x), x, 0, '+-')) | |
assert limit(frac(-2*x + 1), x, 0, "+") == 1 | |
assert limit(frac(-2*x + 1), x, 0, "-") == 0 | |
assert limit(frac(x + S.Half), x, 0, "+-") == S(1)/2 | |
assert limit(frac(1/x), x, 0) == AccumBounds(0, 1) | |
def test_issue_14355(): | |
assert limit(floor(sin(x)/x), x, 0, '+') == 0 | |
assert limit(floor(sin(x)/x), x, 0, '-') == 0 | |
# test comment https://github.com/sympy/sympy/issues/14355#issuecomment-372121314 | |
assert limit(floor(-tan(x)/x), x, 0, '+') == -2 | |
assert limit(floor(-tan(x)/x), x, 0, '-') == -2 | |
def test_atan(): | |
x = Symbol("x", real=True) | |
assert limit(atan(x)*sin(1/x), x, 0) == 0 | |
assert limit(atan(x) + sqrt(x + 1) - sqrt(x), x, oo) == pi/2 | |
def test_set_signs(): | |
assert limit(abs(x), x, 0) == 0 | |
assert limit(abs(sin(x)), x, 0) == 0 | |
assert limit(abs(cos(x)), x, 0) == 1 | |
assert limit(abs(sin(x + 1)), x, 0) == sin(1) | |
# https://github.com/sympy/sympy/issues/9449 | |
assert limit((Abs(x + y) - Abs(x - y))/(2*x), x, 0) == sign(y) | |
# https://github.com/sympy/sympy/issues/12398 | |
assert limit(Abs(log(x)/x**3), x, oo) == 0 | |
assert limit(x*(Abs(log(x)/x**3)/Abs(log(x + 1)/(x + 1)**3) - 1), x, oo) == 3 | |
# https://github.com/sympy/sympy/issues/18501 | |
assert limit(Abs(log(x - 1)**3 - 1), x, 1, '+') == oo | |
# https://github.com/sympy/sympy/issues/18997 | |
assert limit(Abs(log(x)), x, 0) == oo | |
assert limit(Abs(log(Abs(x))), x, 0) == oo | |
# https://github.com/sympy/sympy/issues/19026 | |
z = Symbol('z', positive=True) | |
assert limit(Abs(log(z) + 1)/log(z), z, oo) == 1 | |
# https://github.com/sympy/sympy/issues/20704 | |
assert limit(z*(Abs(1/z + y) - Abs(y - 1/z))/2, z, 0) == 0 | |
# https://github.com/sympy/sympy/issues/21606 | |
assert limit(cos(z)/sign(z), z, pi, '-') == -1 | |
def test_heuristic(): | |
x = Symbol("x", real=True) | |
assert heuristics(sin(1/x) + atan(x), x, 0, '+') == AccumBounds(-1, 1) | |
assert limit(log(2 + sqrt(atan(x))*sqrt(sin(1/x))), x, 0) == log(2) | |
def test_issue_3871(): | |
z = Symbol("z", positive=True) | |
f = -1/z*exp(-z*x) | |
assert limit(f, x, oo) == 0 | |
assert f.limit(x, oo) == 0 | |
def test_exponential(): | |
n = Symbol('n') | |
x = Symbol('x', real=True) | |
assert limit((1 + x/n)**n, n, oo) == exp(x) | |
assert limit((1 + x/(2*n))**n, n, oo) == exp(x/2) | |
assert limit((1 + x/(2*n + 1))**n, n, oo) == exp(x/2) | |
assert limit(((x - 1)/(x + 1))**x, x, oo) == exp(-2) | |
assert limit(1 + (1 + 1/x)**x, x, oo) == 1 + S.Exp1 | |
assert limit((2 + 6*x)**x/(6*x)**x, x, oo) == exp(S('1/3')) | |
def test_exponential2(): | |
n = Symbol('n') | |
assert limit((1 + x/(n + sin(n)))**n, n, oo) == exp(x) | |
def test_doit(): | |
f = Integral(2 * x, x) | |
l = Limit(f, x, oo) | |
assert l.doit() is oo | |
def test_series_AccumBounds(): | |
assert limit(sin(k) - sin(k + 1), k, oo) == AccumBounds(-2, 2) | |
assert limit(cos(k) - cos(k + 1) + 1, k, oo) == AccumBounds(-1, 3) | |
# not the exact bound | |
assert limit(sin(k) - sin(k)*cos(k), k, oo) == AccumBounds(-2, 2) | |
# test for issue #9934 | |
lo = (-3 + cos(1))/2 | |
hi = (1 + cos(1))/2 | |
t1 = Mul(AccumBounds(lo, hi), 1/(-1 + cos(1)), evaluate=False) | |
assert limit(simplify(Sum(cos(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t1 | |
t2 = Mul(AccumBounds(-1 + sin(1)/2, sin(1)/2 + 1), 1/(1 - cos(1))) | |
assert limit(simplify(Sum(sin(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t2 | |
assert limit(((sin(x) + 1)/2)**x, x, oo) == AccumBounds(0, oo) # wolfram says 0 | |
# https://github.com/sympy/sympy/issues/12312 | |
e = 2**(-x)*(sin(x) + 1)**x | |
assert limit(e, x, oo) == AccumBounds(0, oo) | |
def test_bessel_functions_at_infinity(): | |
# Pull Request 23844 implements limits for all bessel and modified bessel | |
# functions approaching infinity along any direction i.e. abs(z0) tends to oo | |
assert limit(besselj(1, x), x, oo) == 0 | |
assert limit(besselj(1, x), x, -oo) == 0 | |
assert limit(besselj(1, x), x, I*oo) == oo*I | |
assert limit(besselj(1, x), x, -I*oo) == -oo*I | |
assert limit(bessely(1, x), x, oo) == 0 | |
assert limit(bessely(1, x), x, -oo) == 0 | |
assert limit(bessely(1, x), x, I*oo) == -oo | |
assert limit(bessely(1, x), x, -I*oo) == -oo | |
assert limit(besseli(1, x), x, oo) == oo | |
assert limit(besseli(1, x), x, -oo) == -oo | |
assert limit(besseli(1, x), x, I*oo) == 0 | |
assert limit(besseli(1, x), x, -I*oo) == 0 | |
assert limit(besselk(1, x), x, oo) == 0 | |
assert limit(besselk(1, x), x, -oo) == -oo*I | |
assert limit(besselk(1, x), x, I*oo) == 0 | |
assert limit(besselk(1, x), x, -I*oo) == 0 | |
# test issue 14874 | |
assert limit(besselk(0, x), x, oo) == 0 | |
def test_doit2(): | |
f = Integral(2 * x, x) | |
l = Limit(f, x, oo) | |
# limit() breaks on the contained Integral. | |
assert l.doit(deep=False) == l | |
def test_issue_2929(): | |
assert limit((x * exp(x))/(exp(x) - 1), x, -oo) == 0 | |
def test_issue_3792(): | |
assert limit((1 - cos(x))/x**2, x, S.Half) == 4 - 4*cos(S.Half) | |
assert limit(sin(sin(x + 1) + 1), x, 0) == sin(1 + sin(1)) | |
assert limit(abs(sin(x + 1) + 1), x, 0) == 1 + sin(1) | |
def test_issue_4090(): | |
assert limit(1/(x + 3), x, 2) == Rational(1, 5) | |
assert limit(1/(x + pi), x, 2) == S.One/(2 + pi) | |
assert limit(log(x)/(x**2 + 3), x, 2) == log(2)/7 | |
assert limit(log(x)/(x**2 + pi), x, 2) == log(2)/(4 + pi) | |
def test_issue_4547(): | |
assert limit(cot(x), x, 0, dir='+') is oo | |
assert limit(cot(x), x, pi/2, dir='+') == 0 | |
def test_issue_5164(): | |
assert limit(x**0.5, x, oo) == oo**0.5 is oo | |
assert limit(x**0.5, x, 16) == 4 # Should this be a float? | |
assert limit(x**0.5, x, 0) == 0 | |
assert limit(x**(-0.5), x, oo) == 0 | |
assert limit(x**(-0.5), x, 4) == S.Half # Should this be a float? | |
def test_issue_5383(): | |
func = (1.0 * 1 + 1.0 * x)**(1.0 * 1 / x) | |
assert limit(func, x, 0) == E | |
def test_issue_14793(): | |
expr = ((x + S(1)/2) * log(x) - x + log(2*pi)/2 - \ | |
log(factorial(x)) + S(1)/(12*x))*x**3 | |
assert limit(expr, x, oo) == S(1)/360 | |
def test_issue_5183(): | |
# using list(...) so py.test can recalculate values | |
tests = list(product([x, -x], | |
[-1, 1], | |
[2, 3, S.Half, Rational(2, 3)], | |
['-', '+'])) | |
results = (oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), oo, | |
0, 0, 0, 0, 0, 0, 0, 0, | |
oo, oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), | |
0, 0, 0, 0, 0, 0, 0, 0) | |
assert len(tests) == len(results) | |
for i, (args, res) in enumerate(zip(tests, results)): | |
y, s, e, d = args | |
eq = y**(s*e) | |
try: | |
assert limit(eq, x, 0, dir=d) == res | |
except AssertionError: | |
if 0: # change to 1 if you want to see the failing tests | |
print() | |
print(i, res, eq, d, limit(eq, x, 0, dir=d)) | |
else: | |
assert None | |
def test_issue_5184(): | |
assert limit(sin(x)/x, x, oo) == 0 | |
assert limit(atan(x), x, oo) == pi/2 | |
assert limit(gamma(x), x, oo) is oo | |
assert limit(cos(x)/x, x, oo) == 0 | |
assert limit(gamma(x), x, S.Half) == sqrt(pi) | |
r = Symbol('r', real=True) | |
assert limit(r*sin(1/r), r, 0) == 0 | |
def test_issue_5229(): | |
assert limit((1 + y)**(1/y) - S.Exp1, y, 0) == 0 | |
def test_issue_4546(): | |
# using list(...) so py.test can recalculate values | |
tests = list(product([cot, tan], | |
[-pi/2, 0, pi/2, pi, pi*Rational(3, 2)], | |
['-', '+'])) | |
results = (0, 0, -oo, oo, 0, 0, -oo, oo, 0, 0, | |
oo, -oo, 0, 0, oo, -oo, 0, 0, oo, -oo) | |
assert len(tests) == len(results) | |
for i, (args, res) in enumerate(zip(tests, results)): | |
f, l, d = args | |
eq = f(x) | |
try: | |
assert limit(eq, x, l, dir=d) == res | |
except AssertionError: | |
if 0: # change to 1 if you want to see the failing tests | |
print() | |
print(i, res, eq, l, d, limit(eq, x, l, dir=d)) | |
else: | |
assert None | |
def test_issue_3934(): | |
assert limit((1 + x**log(3))**(1/x), x, 0) == 1 | |
assert limit((5**(1/x) + 3**(1/x))**x, x, 0) == 5 | |
def test_calculate_series(): | |
# NOTE | |
# The calculate_series method is being deprecated and is no longer responsible | |
# for result being returned. The mrv_leadterm function now uses simple leadterm | |
# calls rather than calculate_series. | |
# needs gruntz calculate_series to go to n = 32 | |
assert limit(x**Rational(77, 3)/(1 + x**Rational(77, 3)), x, oo) == 1 | |
# needs gruntz calculate_series to go to n = 128 | |
assert limit(x**101.1/(1 + x**101.1), x, oo) == 1 | |
def test_issue_5955(): | |
assert limit((x**16)/(1 + x**16), x, oo) == 1 | |
assert limit((x**100)/(1 + x**100), x, oo) == 1 | |
assert limit((x**1885)/(1 + x**1885), x, oo) == 1 | |
assert limit((x**1000/((x + 1)**1000 + exp(-x))), x, oo) == 1 | |
def test_newissue(): | |
assert limit(exp(1/sin(x))/exp(cot(x)), x, 0) == 1 | |
def test_extended_real_line(): | |
assert limit(x - oo, x, oo) == Limit(x - oo, x, oo) | |
assert limit(1/(x + sin(x)) - oo, x, 0) == Limit(1/(x + sin(x)) - oo, x, 0) | |
assert limit(oo/x, x, oo) == Limit(oo/x, x, oo) | |
assert limit(x - oo + 1/x, x, oo) == Limit(x - oo + 1/x, x, oo) | |
def test_order_oo(): | |
x = Symbol('x', positive=True) | |
assert Order(x)*oo != Order(1, x) | |
assert limit(oo/(x**2 - 4), x, oo) is oo | |
def test_issue_5436(): | |
raises(NotImplementedError, lambda: limit(exp(x*y), x, oo)) | |
raises(NotImplementedError, lambda: limit(exp(-x*y), x, oo)) | |
def test_Limit_dir(): | |
raises(TypeError, lambda: Limit(x, x, 0, dir=0)) | |
raises(ValueError, lambda: Limit(x, x, 0, dir='0')) | |
def test_polynomial(): | |
assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, oo) == 1 | |
assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, -oo) == 1 | |
def test_rational(): | |
assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, oo) == (z - 1)/(y*z) | |
assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, -oo) == (z - 1)/(y*z) | |
def test_issue_5740(): | |
assert limit(log(x)*z - log(2*x)*y, x, 0) == oo*sign(y - z) | |
def test_issue_6366(): | |
n = Symbol('n', integer=True, positive=True) | |
r = (n + 1)*x**(n + 1)/(x**(n + 1) - 1) - x/(x - 1) | |
assert limit(r, x, 1).cancel() == n/2 | |
def test_factorial(): | |
f = factorial(x) | |
assert limit(f, x, oo) is oo | |
assert limit(x/f, x, oo) == 0 | |
# see Stirling's approximation: | |
# https://en.wikipedia.org/wiki/Stirling's_approximation | |
assert limit(f/(sqrt(2*pi*x)*(x/E)**x), x, oo) == 1 | |
assert limit(f, x, -oo) == gamma(-oo) | |
def test_issue_6560(): | |
e = (5*x**3/4 - x*Rational(3, 4) + (y*(3*x**2/2 - S.Half) + | |
35*x**4/8 - 15*x**2/4 + Rational(3, 8))/(2*(y + 1))) | |
assert limit(e, y, oo) == 5*x**3/4 + 3*x**2/4 - 3*x/4 - Rational(1, 4) | |
def test_issue_5172(): | |
n = Symbol('n') | |
r = Symbol('r', positive=True) | |
c = Symbol('c') | |
p = Symbol('p', positive=True) | |
m = Symbol('m', negative=True) | |
expr = ((2*n*(n - r + 1)/(n + r*(n - r + 1)))**c + | |
(r - 1)*(n*(n - r + 2)/(n + r*(n - r + 1)))**c - n)/(n**c - n) | |
expr = expr.subs(c, c + 1) | |
raises(NotImplementedError, lambda: limit(expr, n, oo)) | |
assert limit(expr.subs(c, m), n, oo) == 1 | |
assert limit(expr.subs(c, p), n, oo).simplify() == \ | |
(2**(p + 1) + r - 1)/(r + 1)**(p + 1) | |
def test_issue_7088(): | |
a = Symbol('a') | |
assert limit(sqrt(x/(x + a)), x, oo) == 1 | |
def test_branch_cuts(): | |
assert limit(asin(I*x + 2), x, 0) == pi - asin(2) | |
assert limit(asin(I*x + 2), x, 0, '-') == asin(2) | |
assert limit(asin(I*x - 2), x, 0) == -asin(2) | |
assert limit(asin(I*x - 2), x, 0, '-') == -pi + asin(2) | |
assert limit(acos(I*x + 2), x, 0) == -acos(2) | |
assert limit(acos(I*x + 2), x, 0, '-') == acos(2) | |
assert limit(acos(I*x - 2), x, 0) == acos(-2) | |
assert limit(acos(I*x - 2), x, 0, '-') == 2*pi - acos(-2) | |
assert limit(atan(x + 2*I), x, 0) == I*atanh(2) | |
assert limit(atan(x + 2*I), x, 0, '-') == -pi + I*atanh(2) | |
assert limit(atan(x - 2*I), x, 0) == pi - I*atanh(2) | |
assert limit(atan(x - 2*I), x, 0, '-') == -I*atanh(2) | |
assert limit(atan(1/x), x, 0) == pi/2 | |
assert limit(atan(1/x), x, 0, '-') == -pi/2 | |
assert limit(atan(x), x, oo) == pi/2 | |
assert limit(atan(x), x, -oo) == -pi/2 | |
assert limit(acot(x + S(1)/2*I), x, 0) == pi - I*acoth(S(1)/2) | |
assert limit(acot(x + S(1)/2*I), x, 0, '-') == -I*acoth(S(1)/2) | |
assert limit(acot(x - S(1)/2*I), x, 0) == I*acoth(S(1)/2) | |
assert limit(acot(x - S(1)/2*I), x, 0, '-') == -pi + I*acoth(S(1)/2) | |
assert limit(acot(x), x, 0) == pi/2 | |
assert limit(acot(x), x, 0, '-') == -pi/2 | |
assert limit(asec(I*x + S(1)/2), x, 0) == asec(S(1)/2) | |
assert limit(asec(I*x + S(1)/2), x, 0, '-') == -asec(S(1)/2) | |
assert limit(asec(I*x - S(1)/2), x, 0) == 2*pi - asec(-S(1)/2) | |
assert limit(asec(I*x - S(1)/2), x, 0, '-') == asec(-S(1)/2) | |
assert limit(acsc(I*x + S(1)/2), x, 0) == acsc(S(1)/2) | |
assert limit(acsc(I*x + S(1)/2), x, 0, '-') == pi - acsc(S(1)/2) | |
assert limit(acsc(I*x - S(1)/2), x, 0) == -pi + acsc(S(1)/2) | |
assert limit(acsc(I*x - S(1)/2), x, 0, '-') == -acsc(S(1)/2) | |
assert limit(log(I*x - 1), x, 0) == I*pi | |
assert limit(log(I*x - 1), x, 0, '-') == -I*pi | |
assert limit(log(-I*x - 1), x, 0) == -I*pi | |
assert limit(log(-I*x - 1), x, 0, '-') == I*pi | |
assert limit(sqrt(I*x - 1), x, 0) == I | |
assert limit(sqrt(I*x - 1), x, 0, '-') == -I | |
assert limit(sqrt(-I*x - 1), x, 0) == -I | |
assert limit(sqrt(-I*x - 1), x, 0, '-') == I | |
assert limit(cbrt(I*x - 1), x, 0) == (-1)**(S(1)/3) | |
assert limit(cbrt(I*x - 1), x, 0, '-') == -(-1)**(S(2)/3) | |
assert limit(cbrt(-I*x - 1), x, 0) == -(-1)**(S(2)/3) | |
assert limit(cbrt(-I*x - 1), x, 0, '-') == (-1)**(S(1)/3) | |
def test_issue_6364(): | |
a = Symbol('a') | |
e = z/(1 - sqrt(1 + z)*sin(a)**2 - sqrt(1 - z)*cos(a)**2) | |
assert limit(e, z, 0) == 1/(cos(a)**2 - S.Half) | |
def test_issue_6682(): | |
assert limit(exp(2*Ei(-x))/x**2, x, 0) == exp(2*EulerGamma) | |
def test_issue_4099(): | |
a = Symbol('a') | |
assert limit(a/x, x, 0) == oo*sign(a) | |
assert limit(-a/x, x, 0) == -oo*sign(a) | |
assert limit(-a*x, x, oo) == -oo*sign(a) | |
assert limit(a*x, x, oo) == oo*sign(a) | |
def test_issue_4503(): | |
dx = Symbol('dx') | |
assert limit((sqrt(1 + exp(x + dx)) - sqrt(1 + exp(x)))/dx, dx, 0) == \ | |
exp(x)/(2*sqrt(exp(x) + 1)) | |
def test_issue_6052(): | |
G = meijerg((), (), (1,), (0,), -x) | |
g = hyperexpand(G) | |
assert limit(g, x, 0, '+-') == 0 | |
assert limit(g, x, oo) == -oo | |
def test_issue_7224(): | |
expr = sqrt(x)*besseli(1,sqrt(8*x)) | |
assert limit(x*diff(expr, x, x)/expr, x, 0) == 2 | |
assert limit(x*diff(expr, x, x)/expr, x, 1).evalf() == 2.0 | |
def test_issue_8208(): | |
assert limit(n**(Rational(1, 1e9) - 1), n, oo) == 0 | |
def test_issue_8229(): | |
assert limit((x**Rational(1, 4) - 2)/(sqrt(x) - 4)**Rational(2, 3), x, 16) == 0 | |
def test_issue_8433(): | |
d, t = symbols('d t', positive=True) | |
assert limit(erf(1 - t/d), t, oo) == -1 | |
def test_issue_8481(): | |
k = Symbol('k', integer=True, nonnegative=True) | |
lamda = Symbol('lamda', positive=True) | |
assert limit(lamda**k * exp(-lamda) / factorial(k), k, oo) == 0 | |
def test_issue_8462(): | |
assert limit(binomial(n, n/2), n, oo) == oo | |
assert limit(binomial(n, n/2) * 3 ** (-n), n, oo) == 0 | |
def test_issue_8634(): | |
n = Symbol('n', integer=True, positive=True) | |
x = Symbol('x') | |
assert limit(x**n, x, -oo) == oo*sign((-1)**n) | |
def test_issue_8635_18176(): | |
x = Symbol('x', real=True) | |
k = Symbol('k', positive=True) | |
assert limit(x**n - x**(n - 0), x, oo) == 0 | |
assert limit(x**n - x**(n - 5), x, oo) == oo | |
assert limit(x**n - x**(n - 2.5), x, oo) == oo | |
assert limit(x**n - x**(n - k - 1), x, oo) == oo | |
x = Symbol('x', positive=True) | |
assert limit(x**n - x**(n - 1), x, oo) == oo | |
assert limit(x**n - x**(n + 2), x, oo) == -oo | |
def test_issue_8730(): | |
assert limit(subfactorial(x), x, oo) is oo | |
def test_issue_9252(): | |
n = Symbol('n', integer=True) | |
c = Symbol('c', positive=True) | |
assert limit((log(n))**(n/log(n)) / (1 + c)**n, n, oo) == 0 | |
# limit should depend on the value of c | |
raises(NotImplementedError, lambda: limit((log(n))**(n/log(n)) / c**n, n, oo)) | |
def test_issue_9558(): | |
assert limit(sin(x)**15, x, 0, '-') == 0 | |
def test_issue_10801(): | |
# make sure limits work with binomial | |
assert limit(16**k / (k * binomial(2*k, k)**2), k, oo) == pi | |
def test_issue_10976(): | |
s, x = symbols('s x', real=True) | |
assert limit(erf(s*x)/erf(s), s, 0) == x | |
def test_issue_9041(): | |
assert limit(factorial(n) / ((n/exp(1))**n * sqrt(2*pi*n)), n, oo) == 1 | |
def test_issue_9205(): | |
x, y, a = symbols('x, y, a') | |
assert Limit(x, x, a).free_symbols == {a} | |
assert Limit(x, x, a, '-').free_symbols == {a} | |
assert Limit(x + y, x + y, a).free_symbols == {a} | |
assert Limit(-x**2 + y, x**2, a).free_symbols == {y, a} | |
def test_issue_9471(): | |
assert limit(((27**(log(n,3)))/n**3),n,oo) == 1 | |
assert limit(((27**(log(n,3)+1))/n**3),n,oo) == 27 | |
def test_issue_10382(): | |
assert limit(fibonacci(n + 1)/fibonacci(n), n, oo) == GoldenRatio | |
def test_issue_11496(): | |
assert limit(erfc(log(1/x)), x, oo) == 2 | |
def test_issue_11879(): | |
assert simplify(limit(((x+y)**n-x**n)/y, y, 0)) == n*x**(n-1) | |
def test_limit_with_Float(): | |
k = symbols("k") | |
assert limit(1.0 ** k, k, oo) == 1 | |
assert limit(0.3*1.0**k, k, oo) == Rational(3, 10) | |
def test_issue_10610(): | |
assert limit(3**x*3**(-x - 1)*(x + 1)**2/x**2, x, oo) == Rational(1, 3) | |
def test_issue_10868(): | |
assert limit(log(x) + asech(x), x, 0, '+') == log(2) | |
assert limit(log(x) + asech(x), x, 0, '-') == log(2) + 2*I*pi | |
raises(ValueError, lambda: limit(log(x) + asech(x), x, 0, '+-')) | |
assert limit(log(x) + asech(x), x, oo) == oo | |
assert limit(log(x) + acsch(x), x, 0, '+') == log(2) | |
assert limit(log(x) + acsch(x), x, 0, '-') == -oo | |
raises(ValueError, lambda: limit(log(x) + acsch(x), x, 0, '+-')) | |
assert limit(log(x) + acsch(x), x, oo) == oo | |
def test_issue_6599(): | |
assert limit((n + cos(n))/n, n, oo) == 1 | |
def test_issue_12555(): | |
assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, -oo) == 2 | |
assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, oo) is oo | |
def test_issue_12769(): | |
r, z, x = symbols('r z x', real=True) | |
a, b, s0, K, F0, s, T = symbols('a b s0 K F0 s T', positive=True, real=True) | |
fx = (F0**b*K**b*r*s0 - sqrt((F0**2*K**(2*b)*a**2*(b - 1) + \ | |
F0**(2*b)*K**2*a**2*(b - 1) + F0**(2*b)*K**(2*b)*s0**2*(b - 1)*(b**2 - 2*b + 1) - \ | |
2*F0**(2*b)*K**(b + 1)*a*r*s0*(b**2 - 2*b + 1) + \ | |
2*F0**(b + 1)*K**(2*b)*a*r*s0*(b**2 - 2*b + 1) - \ | |
2*F0**(b + 1)*K**(b + 1)*a**2*(b - 1))/((b - 1)*(b**2 - 2*b + 1))))*(b*r - b - r + 1) | |
assert fx.subs(K, F0).factor(deep=True) == limit(fx, K, F0).factor(deep=True) | |
def test_issue_13332(): | |
assert limit(sqrt(30)*5**(-5*x - 1)*(46656*x)**x*(5*x + 2)**(5*x + 5*S.Half) * | |
(6*x + 2)**(-6*x - 5*S.Half), x, oo) == Rational(25, 36) | |
def test_issue_12564(): | |
assert limit(x**2 + x*sin(x) + cos(x), x, -oo) is oo | |
assert limit(x**2 + x*sin(x) + cos(x), x, oo) is oo | |
assert limit(((x + cos(x))**2).expand(), x, oo) is oo | |
assert limit(((x + sin(x))**2).expand(), x, oo) is oo | |
assert limit(((x + cos(x))**2).expand(), x, -oo) is oo | |
assert limit(((x + sin(x))**2).expand(), x, -oo) is oo | |
def test_issue_14456(): | |
raises(NotImplementedError, lambda: Limit(exp(x), x, zoo).doit()) | |
raises(NotImplementedError, lambda: Limit(x**2/(x+1), x, zoo).doit()) | |
def test_issue_14411(): | |
assert limit(3*sec(4*pi*x - x/3), x, 3*pi/(24*pi - 2)) is -oo | |
def test_issue_13382(): | |
assert limit(x*(((x + 1)**2 + 1)/(x**2 + 1) - 1), x, oo) == 2 | |
def test_issue_13403(): | |
assert limit(x*(-1 + (x + log(x + 1) + 1)/(x + log(x))), x, oo) == 1 | |
def test_issue_13416(): | |
assert limit((-x**3*log(x)**3 + (x - 1)*(x + 1)**2*log(x + 1)**3)/(x**2*log(x)**3), x, oo) == 1 | |
def test_issue_13462(): | |
assert limit(n**2*(2*n*(-(1 - 1/(2*n))**x + 1) - x - (-x**2/4 + x/4)/n), n, oo) == x**3/24 - x**2/8 + x/12 | |
def test_issue_13750(): | |
a = Symbol('a') | |
assert limit(erf(a - x), x, oo) == -1 | |
assert limit(erf(sqrt(x) - x), x, oo) == -1 | |
def test_issue_14276(): | |
assert isinstance(limit(sin(x)**log(x), x, oo), Limit) | |
assert isinstance(limit(sin(x)**cos(x), x, oo), Limit) | |
assert isinstance(limit(sin(log(cos(x))), x, oo), Limit) | |
assert limit((1 + 1/(x**2 + cos(x)))**(x**2 + x), x, oo) == E | |
def test_issue_14514(): | |
assert limit((1/(log(x)**log(x)))**(1/x), x, oo) == 1 | |
def test_issues_14525(): | |
assert limit(sin(x)**2 - cos(x) + tan(x)*csc(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity) | |
assert limit(sin(x)**2 - cos(x) + sin(x)*cot(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity) | |
assert limit(cot(x) - tan(x)**2, x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity) | |
assert limit(cos(x) - tan(x)**2, x, oo) == AccumBounds(S.NegativeInfinity, S.One) | |
assert limit(sin(x) - tan(x)**2, x, oo) == AccumBounds(S.NegativeInfinity, S.One) | |
assert limit(cos(x)**2 - tan(x)**2, x, oo) == AccumBounds(S.NegativeInfinity, S.One) | |
assert limit(tan(x)**2 + sin(x)**2 - cos(x), x, oo) == AccumBounds(-S.One, S.Infinity) | |
def test_issue_14574(): | |
assert limit(sqrt(x)*cos(x - x**2) / (x + 1), x, oo) == 0 | |
def test_issue_10102(): | |
assert limit(fresnels(x), x, oo) == S.Half | |
assert limit(3 + fresnels(x), x, oo) == 3 + S.Half | |
assert limit(5*fresnels(x), x, oo) == Rational(5, 2) | |
assert limit(fresnelc(x), x, oo) == S.Half | |
assert limit(fresnels(x), x, -oo) == Rational(-1, 2) | |
assert limit(4*fresnelc(x), x, -oo) == -2 | |
def test_issue_14377(): | |
raises(NotImplementedError, lambda: limit(exp(I*x)*sin(pi*x), x, oo)) | |
def test_issue_15146(): | |
e = (x/2) * (-2*x**3 - 2*(x**3 - 1) * x**2 * digamma(x**3 + 1) + \ | |
2*(x**3 - 1) * x**2 * digamma(x**3 + x + 1) + x + 3) | |
assert limit(e, x, oo) == S(1)/3 | |
def test_issue_15202(): | |
e = (2**x*(2 + 2**(-x)*(-2*2**x + x + 2))/(x + 1))**(x + 1) | |
assert limit(e, x, oo) == exp(1) | |
e = (log(x, 2)**7 + 10*x*factorial(x) + 5**x) / (factorial(x + 1) + 3*factorial(x) + 10**x) | |
assert limit(e, x, oo) == 10 | |
def test_issue_15282(): | |
assert limit((x**2000 - (x + 1)**2000) / x**1999, x, oo) == -2000 | |
def test_issue_15984(): | |
assert limit((-x + log(exp(x) + 1))/x, x, oo, dir='-') == 0 | |
def test_issue_13571(): | |
assert limit(uppergamma(x, 1) / gamma(x), x, oo) == 1 | |
def test_issue_13575(): | |
assert limit(acos(erfi(x)), x, 1) == acos(erfi(S.One)) | |
def test_issue_17325(): | |
assert Limit(sin(x)/x, x, 0, dir="+-").doit() == 1 | |
assert Limit(x**2, x, 0, dir="+-").doit() == 0 | |
assert Limit(1/x**2, x, 0, dir="+-").doit() is oo | |
assert Limit(1/x, x, 0, dir="+-").doit() is zoo | |
def test_issue_10978(): | |
assert LambertW(x).limit(x, 0) == 0 | |
def test_issue_14313_comment(): | |
assert limit(floor(n/2), n, oo) is oo | |
def test_issue_15323(): | |
d = ((1 - 1/x)**x).diff(x) | |
assert limit(d, x, 1, dir='+') == 1 | |
def test_issue_12571(): | |
assert limit(-LambertW(-log(x))/log(x), x, 1) == 1 | |
def test_issue_14590(): | |
assert limit((x**3*((x + 1)/x)**x)/((x + 1)*(x + 2)*(x + 3)), x, oo) == exp(1) | |
def test_issue_14393(): | |
a, b = symbols('a b') | |
assert limit((x**b - y**b)/(x**a - y**a), x, y) == b*y**(-a + b)/a | |
def test_issue_14556(): | |
assert limit(factorial(n + 1)**(1/(n + 1)) - factorial(n)**(1/n), n, oo) == exp(-1) | |
def test_issue_14811(): | |
assert limit(((1 + ((S(2)/3)**(x + 1)))**(2**x))/(2**((S(4)/3)**(x - 1))), x, oo) == oo | |
def test_issue_16222(): | |
assert limit(exp(x), x, 1000000000) == exp(1000000000) | |
def test_issue_16714(): | |
assert limit(((x**(x + 1) + (x + 1)**x) / x**(x + 1))**x, x, oo) == exp(exp(1)) | |
def test_issue_16722(): | |
z = symbols('z', positive=True) | |
assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1) | |
z = symbols('z', positive=True, integer=True) | |
assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1) | |
def test_issue_17431(): | |
assert limit(((n + 1) + 1) / (((n + 1) + 2) * factorial(n + 1)) * | |
(n + 2) * factorial(n) / (n + 1), n, oo) == 0 | |
assert limit((n + 2)**2*factorial(n)/((n + 1)*(n + 3)*factorial(n + 1)) | |
, n, oo) == 0 | |
assert limit((n + 1) * factorial(n) / (n * factorial(n + 1)), n, oo) == 0 | |
def test_issue_17671(): | |
assert limit(Ei(-log(x)) - log(log(x))/x, x, 1) == EulerGamma | |
def test_issue_17751(): | |
a, b, c, x = symbols('a b c x', positive=True) | |
assert limit((a + 1)*x - sqrt((a + 1)**2*x**2 + b*x + c), x, oo) == -b/(2*a + 2) | |
def test_issue_17792(): | |
assert limit(factorial(n)/sqrt(n)*(exp(1)/n)**n, n, oo) == sqrt(2)*sqrt(pi) | |
def test_issue_18118(): | |
assert limit(sign(sin(x)), x, 0, "-") == -1 | |
assert limit(sign(sin(x)), x, 0, "+") == 1 | |
def test_issue_18306(): | |
assert limit(sin(sqrt(x))/sqrt(sin(x)), x, 0, '+') == 1 | |
def test_issue_18378(): | |
assert limit(log(exp(3*x) + x)/log(exp(x) + x**100), x, oo) == 3 | |
def test_issue_18399(): | |
assert limit((1 - S(1)/2*x)**(3*x), x, oo) is zoo | |
assert limit((-x)**x, x, oo) is zoo | |
def test_issue_18442(): | |
assert limit(tan(x)**(2**(sqrt(pi))), x, oo, dir='-') == Limit(tan(x)**(2**(sqrt(pi))), x, oo, dir='-') | |
def test_issue_18452(): | |
assert limit(abs(log(x))**x, x, 0) == 1 | |
assert limit(abs(log(x))**x, x, 0, "-") == 1 | |
def test_issue_18473(): | |
assert limit(sin(x)**(1/x), x, oo) == Limit(sin(x)**(1/x), x, oo, dir='-') | |
assert limit(cos(x)**(1/x), x, oo) == Limit(cos(x)**(1/x), x, oo, dir='-') | |
assert limit(tan(x)**(1/x), x, oo) == Limit(tan(x)**(1/x), x, oo, dir='-') | |
assert limit((cos(x) + 2)**(1/x), x, oo) == 1 | |
assert limit((sin(x) + 10)**(1/x), x, oo) == 1 | |
assert limit((cos(x) - 2)**(1/x), x, oo) == Limit((cos(x) - 2)**(1/x), x, oo, dir='-') | |
assert limit((cos(x) + 1)**(1/x), x, oo) == AccumBounds(0, 1) | |
assert limit((tan(x)**2)**(2/x) , x, oo) == AccumBounds(0, oo) | |
assert limit((sin(x)**2)**(1/x), x, oo) == AccumBounds(0, 1) | |
# Tests for issue #23751 | |
assert limit((cos(x) + 1)**(1/x), x, -oo) == AccumBounds(1, oo) | |
assert limit((sin(x)**2)**(1/x), x, -oo) == AccumBounds(1, oo) | |
assert limit((tan(x)**2)**(2/x) , x, -oo) == AccumBounds(0, oo) | |
def test_issue_18482(): | |
assert limit((2*exp(3*x)/(exp(2*x) + 1))**(1/x), x, oo) == exp(1) | |
def test_issue_18508(): | |
assert limit(sin(x)/sqrt(1-cos(x)), x, 0) == sqrt(2) | |
assert limit(sin(x)/sqrt(1-cos(x)), x, 0, dir='+') == sqrt(2) | |
assert limit(sin(x)/sqrt(1-cos(x)), x, 0, dir='-') == -sqrt(2) | |
def test_issue_18521(): | |
raises(NotImplementedError, lambda: limit(exp((2 - n) * x), x, oo)) | |
def test_issue_18969(): | |
a, b = symbols('a b', positive=True) | |
assert limit(LambertW(a), a, b) == LambertW(b) | |
assert limit(exp(LambertW(a)), a, b) == exp(LambertW(b)) | |
def test_issue_18992(): | |
assert limit(n/(factorial(n)**(1/n)), n, oo) == exp(1) | |
def test_issue_19067(): | |
x = Symbol('x') | |
assert limit(gamma(x)/(gamma(x - 1)*gamma(x + 2)), x, 0) == -1 | |
def test_issue_19586(): | |
assert limit(x**(2**x*3**(-x)), x, oo) == 1 | |
def test_issue_13715(): | |
n = Symbol('n') | |
p = Symbol('p', zero=True) | |
assert limit(n + p, n, 0) == 0 | |
def test_issue_15055(): | |
assert limit(n**3*((-n - 1)*sin(1/n) + (n + 2)*sin(1/(n + 1)))/(-n + 1), n, oo) == 1 | |
def test_issue_16708(): | |
m, vi = symbols('m vi', positive=True) | |
B, ti, d = symbols('B ti d') | |
assert limit((B*ti*vi - sqrt(m)*sqrt(-2*B*d*vi + m*(vi)**2) + m*vi)/(B*vi), B, 0) == (d + ti*vi)/vi | |
def test_issue_19154(): | |
assert limit(besseli(1, 3 *x)/(x *besseli(1, x)**3), x , oo) == 2*sqrt(3)*pi/3 | |
assert limit(besseli(1, 3 *x)/(x *besseli(1, x)**3), x , -oo) == -2*sqrt(3)*pi/3 | |
def test_issue_19453(): | |
beta = Symbol("beta", positive=True) | |
h = Symbol("h", positive=True) | |
m = Symbol("m", positive=True) | |
w = Symbol("omega", positive=True) | |
g = Symbol("g", positive=True) | |
e = exp(1) | |
q = 3*h**2*beta*g*e**(0.5*h*beta*w) | |
p = m**2*w**2 | |
s = e**(h*beta*w) - 1 | |
Z = -q/(4*p*s) - q/(2*p*s**2) - q*(e**(h*beta*w) + 1)/(2*p*s**3)\ | |
+ e**(0.5*h*beta*w)/s | |
E = -diff(log(Z), beta) | |
assert limit(E - 0.5*h*w, beta, oo) == 0 | |
assert limit(E.simplify() - 0.5*h*w, beta, oo) == 0 | |
def test_issue_19739(): | |
assert limit((-S(1)/4)**x, x, oo) == 0 | |
def test_issue_19766(): | |
assert limit(2**(-x)*sqrt(4**(x + 1) + 1), x, oo) == 2 | |
def test_issue_19770(): | |
m = Symbol('m') | |
# the result is not 0 for non-real m | |
assert limit(cos(m*x)/x, x, oo) == Limit(cos(m*x)/x, x, oo, dir='-') | |
m = Symbol('m', real=True) | |
# can be improved to give the correct result 0 | |
assert limit(cos(m*x)/x, x, oo) == Limit(cos(m*x)/x, x, oo, dir='-') | |
m = Symbol('m', nonzero=True) | |
assert limit(cos(m*x), x, oo) == AccumBounds(-1, 1) | |
assert limit(cos(m*x)/x, x, oo) == 0 | |
def test_issue_7535(): | |
assert limit(tan(x)/sin(tan(x)), x, pi/2) == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='+') | |
assert limit(tan(x)/sin(tan(x)), x, pi/2, dir='-') == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='-') | |
assert limit(tan(x)/sin(tan(x)), x, pi/2, dir='+-') == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='+-') | |
assert limit(sin(tan(x)),x,pi/2) == AccumBounds(-1, 1) | |
assert -oo*(1/sin(-oo)) == AccumBounds(-oo, oo) | |
assert oo*(1/sin(oo)) == AccumBounds(-oo, oo) | |
assert oo*(1/sin(-oo)) == AccumBounds(-oo, oo) | |
assert -oo*(1/sin(oo)) == AccumBounds(-oo, oo) | |
def test_issue_20365(): | |
assert limit(((x + 1)**(1/x) - E)/x, x, 0) == -E/2 | |
def test_issue_21031(): | |
assert limit(((1 + x)**(1/x) - (1 + 2*x)**(1/(2*x)))/asin(x), x, 0) == E/2 | |
def test_issue_21038(): | |
assert limit(sin(pi*x)/(3*x - 12), x, 4) == pi/3 | |
def test_issue_20578(): | |
expr = abs(x) * sin(1/x) | |
assert limit(expr,x,0,'+') == 0 | |
assert limit(expr,x,0,'-') == 0 | |
assert limit(expr,x,0,'+-') == 0 | |
def test_issue_21227(): | |
f = log(x) | |
assert f.nseries(x, logx=y) == y | |
assert f.nseries(x, logx=-x) == -x | |
f = log(-log(x)) | |
assert f.nseries(x, logx=y) == log(-y) | |
assert f.nseries(x, logx=-x) == log(x) | |
f = log(log(x)) | |
assert f.nseries(x, logx=y) == log(y) | |
assert f.nseries(x, logx=-x) == log(-x) | |
assert f.nseries(x, logx=x) == log(x) | |
f = log(log(log(1/x))) | |
assert f.nseries(x, logx=y) == log(log(-y)) | |
assert f.nseries(x, logx=-y) == log(log(y)) | |
assert f.nseries(x, logx=x) == log(log(-x)) | |
assert f.nseries(x, logx=-x) == log(log(x)) | |
def test_issue_21415(): | |
exp = (x-1)*cos(1/(x-1)) | |
assert exp.limit(x,1) == 0 | |
assert exp.expand().limit(x,1) == 0 | |
def test_issue_21530(): | |
assert limit(sinh(n + 1)/sinh(n), n, oo) == E | |
def test_issue_21550(): | |
r = (sqrt(5) - 1)/2 | |
assert limit((x - r)/(x**2 + x - 1), x, r) == sqrt(5)/5 | |
def test_issue_21661(): | |
out = limit((x**(x + 1) * (log(x) + 1) + 1) / x, x, 11) | |
assert out == S(3138428376722)/11 + 285311670611*log(11) | |
def test_issue_21701(): | |
assert limit((besselj(z, x)/x**z).subs(z, 7), x, 0) == S(1)/645120 | |
def test_issue_21721(): | |
a = Symbol('a', real=True) | |
I = integrate(1/(pi*(1 + (x - a)**2)), x) | |
assert I.limit(x, oo) == S.Half | |
def test_issue_21756(): | |
term = (1 - exp(-2*I*pi*z))/(1 - exp(-2*I*pi*z/5)) | |
assert term.limit(z, 0) == 5 | |
assert re(term).limit(z, 0) == 5 | |
def test_issue_21785(): | |
a = Symbol('a') | |
assert sqrt((-a**2 + x**2)/(1 - x**2)).limit(a, 1, '-') == I | |
def test_issue_22181(): | |
assert limit((-1)**x * 2**(-x), x, oo) == 0 | |
def test_issue_22220(): | |
e1 = sqrt(30)*atan(sqrt(30)*tan(x/2)/6)/30 | |
e2 = sqrt(30)*I*(-log(sqrt(2)*tan(x/2) - 2*sqrt(15)*I/5) + | |
+log(sqrt(2)*tan(x/2) + 2*sqrt(15)*I/5))/60 | |
assert limit(e1, x, -pi) == -sqrt(30)*pi/60 | |
assert limit(e2, x, -pi) == -sqrt(30)*pi/30 | |
assert limit(e1, x, -pi, '-') == sqrt(30)*pi/60 | |
assert limit(e2, x, -pi, '-') == 0 | |
# test https://github.com/sympy/sympy/issues/22220#issuecomment-972727694 | |
expr = log(x - I) - log(-x - I) | |
expr2 = logcombine(expr, force=True) | |
assert limit(expr, x, oo) == limit(expr2, x, oo) == I*pi | |
# test https://github.com/sympy/sympy/issues/22220#issuecomment-1077618340 | |
expr = expr = (-log(tan(x/2) - I) +log(tan(x/2) + I)) | |
assert limit(expr, x, pi, '+') == 2*I*pi | |
assert limit(expr, x, pi, '-') == 0 | |
def test_issue_22334(): | |
k, n = symbols('k, n', positive=True) | |
assert limit((n+1)**k/((n+1)**(k+1) - (n)**(k+1)), n, oo) == 1/(k + 1) | |
assert limit((n+1)**k/((n+1)**(k+1) - (n)**(k+1)).expand(), n, oo) == 1/(k + 1) | |
assert limit((n+1)**k/(n*(-n**k + (n + 1)**k) + (n + 1)**k), n, oo) == 1/(k + 1) | |
def test_sympyissue_22986(): | |
assert limit(acosh(1 + 1/x)*sqrt(x), x, oo) == sqrt(2) | |
def test_issue_23231(): | |
f = (2**x - 2**(-x))/(2**x + 2**(-x)) | |
assert limit(f, x, -oo) == -1 | |
def test_issue_23596(): | |
assert integrate(((1 + x)/x**2)*exp(-1/x), (x, 0, oo)) == oo | |
def test_issue_23752(): | |
expr1 = sqrt(-I*x**2 + x - 3) | |
expr2 = sqrt(-I*x**2 + I*x - 3) | |
assert limit(expr1, x, 0, '+') == -sqrt(3)*I | |
assert limit(expr1, x, 0, '-') == -sqrt(3)*I | |
assert limit(expr2, x, 0, '+') == sqrt(3)*I | |
assert limit(expr2, x, 0, '-') == -sqrt(3)*I | |
def test_issue_24276(): | |
fx = log(tan(pi/2*tanh(x))).diff(x) | |
assert fx.limit(x, oo) == 2 | |
assert fx.simplify().limit(x, oo) == 2 | |
assert fx.rewrite(sin).limit(x, oo) == 2 | |
assert fx.rewrite(sin).simplify().limit(x, oo) == 2 | |
def test_issue_25230(): | |
a = Symbol('a', real = True) | |
b = Symbol('b', positive = True) | |
c = Symbol('c', negative = True) | |
n = Symbol('n', integer = True) | |
raises(NotImplementedError, lambda: limit(Mod(x, a), x, a)) | |
assert limit(Mod(x, b), x, n*b, '+') == 0 | |
assert limit(Mod(x, b), x, n*b, '-') == b | |
assert limit(Mod(x, c), x, n*c, '+') == c | |
assert limit(Mod(x, c), x, n*c, '-') == 0 | |
def test_issue_25582(): | |
assert limit(asin(exp(x)), x, oo, '-') == -oo*I | |
assert limit(acos(exp(x)), x, oo, '-') == oo*I | |
assert limit(atan(exp(x)), x, oo, '-') == pi/2 | |
assert limit(acot(exp(x)), x, oo, '-') == 0 | |
assert limit(asec(exp(x)), x, oo, '-') == pi/2 | |
assert limit(acsc(exp(x)), x, oo, '-') == 0 | |
def test_issue_25847(): | |
#atan | |
assert limit(atan(sin(x)/x), x, 0, '+-') == pi/4 | |
assert limit(atan(exp(1/x)), x, 0, '+') == pi/2 | |
assert limit(atan(exp(1/x)), x, 0, '-') == 0 | |
#asin | |
assert limit(asin(sin(x)/x), x, 0, '+-') == pi/2 | |
assert limit(asin(exp(1/x)), x, 0, '+') == -oo*I | |
assert limit(asin(exp(1/x)), x, 0, '-') == 0 | |
#acos | |
assert limit(acos(sin(x)/x), x, 0, '+-') == 0 | |
assert limit(acos(exp(1/x)), x, 0, '+') == oo*I | |
assert limit(acos(exp(1/x)), x, 0, '-') == pi/2 | |
#acot | |
assert limit(acot(sin(x)/x), x, 0, '+-') == pi/4 | |
assert limit(acot(exp(1/x)), x, 0, '+') == 0 | |
assert limit(acot(exp(1/x)), x, 0, '-') == pi/2 | |
#asec | |
assert limit(asec(sin(x)/x), x, 0, '+-') == 0 | |
assert limit(asec(exp(1/x)), x, 0, '+') == pi/2 | |
assert limit(asec(exp(1/x)), x, 0, '-') == oo*I | |
#acsc | |
assert limit(acsc(sin(x)/x), x, 0, '+-') == pi/2 | |
assert limit(acsc(exp(1/x)), x, 0, '+') == 0 | |
assert limit(acsc(exp(1/x)), x, 0, '-') == -oo*I | |
#atanh | |
assert limit(atanh(sin(x)/x), x, 0, '+-') == oo | |
assert limit(atanh(exp(1/x)), x, 0, '+') == -I*pi/2 | |
assert limit(atanh(exp(1/x)), x, 0, '-') == 0 | |
#asinh | |
assert limit(asinh(sin(x)/x), x, 0, '+-') == log(1 + sqrt(2)) | |
assert limit(asinh(exp(1/x)), x, 0, '+') == oo | |
assert limit(asinh(exp(1/x)), x, 0, '-') == 0 | |
#acosh | |
assert limit(acosh(sin(x)/x), x, 0, '+-') == 0 | |
assert limit(acosh(exp(1/x)), x, 0, '+') == oo | |
assert limit(acosh(exp(1/x)), x, 0, '-') == I*pi/2 | |
#acoth | |
assert limit(acoth(sin(x)/x), x, 0, '+-') == oo | |
assert limit(acoth(exp(1/x)), x, 0, '+') == 0 | |
assert limit(acoth(exp(1/x)), x, 0, '-') == -I*pi/2 | |
#asech | |
assert limit(asech(sin(x)/x), x, 0, '+-') == 0 | |
assert limit(asech(exp(1/x)), x, 0, '+') == I*pi/2 | |
assert limit(asech(exp(1/x)), x, 0, '-') == oo | |
#acsch | |
assert limit(acsch(sin(x)/x), x, 0, '+-') == log(1 + sqrt(2)) | |
assert limit(acsch(exp(1/x)), x, 0, '+') == 0 | |
assert limit(acsch(exp(1/x)), x, 0, '-') == oo | |
def test_issue_26040(): | |
assert limit(besseli(0, x + 1)/besseli(0, x), x, oo) == S.Exp1 | |
def test_issue_26250(): | |
e = elliptic_e(4*x/(x**2 + 2*x + 1)) | |
k = elliptic_k(4*x/(x**2 + 2*x + 1)) | |
e1 = ((1-3*x**2)*e**2/2 - (x**2-2*x+1)*e*k/2) | |
e2 = pi**2*(x**8 - 2*x**7 - x**6 + 4*x**5 - x**4 - 2*x**3 + x**2) | |
assert limit(e1/e2, x, 0) == -S(1)/8 | |