Spaces:
Sleeping
Sleeping
"""Limits of sequences""" | |
from sympy.calculus.accumulationbounds import AccumulationBounds | |
from sympy.core.add import Add | |
from sympy.core.function import PoleError | |
from sympy.core.power import Pow | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Dummy | |
from sympy.core.sympify import sympify | |
from sympy.functions.combinatorial.numbers import fibonacci | |
from sympy.functions.combinatorial.factorials import factorial, subfactorial | |
from sympy.functions.special.gamma_functions import gamma | |
from sympy.functions.elementary.complexes import Abs | |
from sympy.functions.elementary.miscellaneous import Max, Min | |
from sympy.functions.elementary.trigonometric import cos, sin | |
from sympy.series.limits import Limit | |
def difference_delta(expr, n=None, step=1): | |
"""Difference Operator. | |
Explanation | |
=========== | |
Discrete analog of differential operator. Given a sequence x[n], | |
returns the sequence x[n + step] - x[n]. | |
Examples | |
======== | |
>>> from sympy import difference_delta as dd | |
>>> from sympy.abc import n | |
>>> dd(n*(n + 1), n) | |
2*n + 2 | |
>>> dd(n*(n + 1), n, 2) | |
4*n + 6 | |
References | |
========== | |
.. [1] https://reference.wolfram.com/language/ref/DifferenceDelta.html | |
""" | |
expr = sympify(expr) | |
if n is None: | |
f = expr.free_symbols | |
if len(f) == 1: | |
n = f.pop() | |
elif len(f) == 0: | |
return S.Zero | |
else: | |
raise ValueError("Since there is more than one variable in the" | |
" expression, a variable must be supplied to" | |
" take the difference of %s" % expr) | |
step = sympify(step) | |
if step.is_number is False or step.is_finite is False: | |
raise ValueError("Step should be a finite number.") | |
if hasattr(expr, '_eval_difference_delta'): | |
result = expr._eval_difference_delta(n, step) | |
if result: | |
return result | |
return expr.subs(n, n + step) - expr | |
def dominant(expr, n): | |
"""Finds the dominant term in a sum, that is a term that dominates | |
every other term. | |
Explanation | |
=========== | |
If limit(a/b, n, oo) is oo then a dominates b. | |
If limit(a/b, n, oo) is 0 then b dominates a. | |
Otherwise, a and b are comparable. | |
If there is no unique dominant term, then returns ``None``. | |
Examples | |
======== | |
>>> from sympy import Sum | |
>>> from sympy.series.limitseq import dominant | |
>>> from sympy.abc import n, k | |
>>> dominant(5*n**3 + 4*n**2 + n + 1, n) | |
5*n**3 | |
>>> dominant(2**n + Sum(k, (k, 0, n)), n) | |
2**n | |
See Also | |
======== | |
sympy.series.limitseq.dominant | |
""" | |
terms = Add.make_args(expr.expand(func=True)) | |
term0 = terms[-1] | |
comp = [term0] # comparable terms | |
for t in terms[:-1]: | |
r = term0/t | |
e = r.gammasimp() | |
if e == r: | |
e = r.factor() | |
l = limit_seq(e, n) | |
if l is None: | |
return None | |
elif l.is_zero: | |
term0 = t | |
comp = [term0] | |
elif l not in [S.Infinity, S.NegativeInfinity]: | |
comp.append(t) | |
if len(comp) > 1: | |
return None | |
return term0 | |
def _limit_inf(expr, n): | |
try: | |
return Limit(expr, n, S.Infinity).doit(deep=False) | |
except (NotImplementedError, PoleError): | |
return None | |
def _limit_seq(expr, n, trials): | |
from sympy.concrete.summations import Sum | |
for i in range(trials): | |
if not expr.has(Sum): | |
result = _limit_inf(expr, n) | |
if result is not None: | |
return result | |
num, den = expr.as_numer_denom() | |
if not den.has(n) or not num.has(n): | |
result = _limit_inf(expr.doit(), n) | |
if result is not None: | |
return result | |
return None | |
num, den = (difference_delta(t.expand(), n) for t in [num, den]) | |
expr = (num / den).gammasimp() | |
if not expr.has(Sum): | |
result = _limit_inf(expr, n) | |
if result is not None: | |
return result | |
num, den = expr.as_numer_denom() | |
num = dominant(num, n) | |
if num is None: | |
return None | |
den = dominant(den, n) | |
if den is None: | |
return None | |
expr = (num / den).gammasimp() | |
def limit_seq(expr, n=None, trials=5): | |
"""Finds the limit of a sequence as index ``n`` tends to infinity. | |
Parameters | |
========== | |
expr : Expr | |
SymPy expression for the ``n-th`` term of the sequence | |
n : Symbol, optional | |
The index of the sequence, an integer that tends to positive | |
infinity. If None, inferred from the expression unless it has | |
multiple symbols. | |
trials: int, optional | |
The algorithm is highly recursive. ``trials`` is a safeguard from | |
infinite recursion in case the limit is not easily computed by the | |
algorithm. Try increasing ``trials`` if the algorithm returns ``None``. | |
Admissible Terms | |
================ | |
The algorithm is designed for sequences built from rational functions, | |
indefinite sums, and indefinite products over an indeterminate n. Terms of | |
alternating sign are also allowed, but more complex oscillatory behavior is | |
not supported. | |
Examples | |
======== | |
>>> from sympy import limit_seq, Sum, binomial | |
>>> from sympy.abc import n, k, m | |
>>> limit_seq((5*n**3 + 3*n**2 + 4) / (3*n**3 + 4*n - 5), n) | |
5/3 | |
>>> limit_seq(binomial(2*n, n) / Sum(binomial(2*k, k), (k, 1, n)), n) | |
3/4 | |
>>> limit_seq(Sum(k**2 * Sum(2**m/m, (m, 1, k)), (k, 1, n)) / (2**n*n), n) | |
4 | |
See Also | |
======== | |
sympy.series.limitseq.dominant | |
References | |
========== | |
.. [1] Computing Limits of Sequences - Manuel Kauers | |
""" | |
from sympy.concrete.summations import Sum | |
if n is None: | |
free = expr.free_symbols | |
if len(free) == 1: | |
n = free.pop() | |
elif not free: | |
return expr | |
else: | |
raise ValueError("Expression has more than one variable. " | |
"Please specify a variable.") | |
elif n not in expr.free_symbols: | |
return expr | |
expr = expr.rewrite(fibonacci, S.GoldenRatio) | |
expr = expr.rewrite(factorial, subfactorial, gamma) | |
n_ = Dummy("n", integer=True, positive=True) | |
n1 = Dummy("n", odd=True, positive=True) | |
n2 = Dummy("n", even=True, positive=True) | |
# If there is a negative term raised to a power involving n, or a | |
# trigonometric function, then consider even and odd n separately. | |
powers = (p.as_base_exp() for p in expr.atoms(Pow)) | |
if (any(b.is_negative and e.has(n) for b, e in powers) or | |
expr.has(cos, sin)): | |
L1 = _limit_seq(expr.xreplace({n: n1}), n1, trials) | |
if L1 is not None: | |
L2 = _limit_seq(expr.xreplace({n: n2}), n2, trials) | |
if L1 != L2: | |
if L1.is_comparable and L2.is_comparable: | |
return AccumulationBounds(Min(L1, L2), Max(L1, L2)) | |
else: | |
return None | |
else: | |
L1 = _limit_seq(expr.xreplace({n: n_}), n_, trials) | |
if L1 is not None: | |
return L1 | |
else: | |
if expr.is_Add: | |
limits = [limit_seq(term, n, trials) for term in expr.args] | |
if any(result is None for result in limits): | |
return None | |
else: | |
return Add(*limits) | |
# Maybe the absolute value is easier to deal with (though not if | |
# it has a Sum). If it tends to 0, the limit is 0. | |
elif not expr.has(Sum): | |
lim = _limit_seq(Abs(expr.xreplace({n: n_})), n_, trials) | |
if lim is not None and lim.is_zero: | |
return S.Zero | |