Spaces:
Sleeping
Sleeping
def finite_diff(expression, variable, increment=1): | |
""" | |
Takes as input a polynomial expression and the variable used to construct | |
it and returns the difference between function's value when the input is | |
incremented to 1 and the original function value. If you want an increment | |
other than one supply it as a third argument. | |
Examples | |
======== | |
>>> from sympy.abc import x, y, z | |
>>> from sympy.series.kauers import finite_diff | |
>>> finite_diff(x**2, x) | |
2*x + 1 | |
>>> finite_diff(y**3 + 2*y**2 + 3*y + 4, y) | |
3*y**2 + 7*y + 6 | |
>>> finite_diff(x**2 + 3*x + 8, x, 2) | |
4*x + 10 | |
>>> finite_diff(z**3 + 8*z, z, 3) | |
9*z**2 + 27*z + 51 | |
""" | |
expression = expression.expand() | |
expression2 = expression.subs(variable, variable + increment) | |
expression2 = expression2.expand() | |
return expression2 - expression | |
def finite_diff_kauers(sum): | |
""" | |
Takes as input a Sum instance and returns the difference between the sum | |
with the upper index incremented by 1 and the original sum. For example, | |
if S(n) is a sum, then finite_diff_kauers will return S(n + 1) - S(n). | |
Examples | |
======== | |
>>> from sympy.series.kauers import finite_diff_kauers | |
>>> from sympy import Sum | |
>>> from sympy.abc import x, y, m, n, k | |
>>> finite_diff_kauers(Sum(k, (k, 1, n))) | |
n + 1 | |
>>> finite_diff_kauers(Sum(1/k, (k, 1, n))) | |
1/(n + 1) | |
>>> finite_diff_kauers(Sum((x*y**2), (x, 1, n), (y, 1, m))) | |
(m + 1)**2*(n + 1) | |
>>> finite_diff_kauers(Sum((x*y), (x, 1, m), (y, 1, n))) | |
(m + 1)*(n + 1) | |
""" | |
function = sum.function | |
for l in sum.limits: | |
function = function.subs(l[0], l[- 1] + 1) | |
return function | |