Spaces:
Sleeping
Sleeping
""" | |
Convergence acceleration / extrapolation methods for series and | |
sequences. | |
References: | |
Carl M. Bender & Steven A. Orszag, "Advanced Mathematical Methods for | |
Scientists and Engineers: Asymptotic Methods and Perturbation Theory", | |
Springer 1999. (Shanks transformation: pp. 368-375, Richardson | |
extrapolation: pp. 375-377.) | |
""" | |
from sympy.core.numbers import Integer | |
from sympy.core.singleton import S | |
from sympy.functions.combinatorial.factorials import factorial | |
def richardson(A, k, n, N): | |
""" | |
Calculate an approximation for lim k->oo A(k) using Richardson | |
extrapolation with the terms A(n), A(n+1), ..., A(n+N+1). | |
Choosing N ~= 2*n often gives good results. | |
Examples | |
======== | |
A simple example is to calculate exp(1) using the limit definition. | |
This limit converges slowly; n = 100 only produces two accurate | |
digits: | |
>>> from sympy.abc import n | |
>>> e = (1 + 1/n)**n | |
>>> print(round(e.subs(n, 100).evalf(), 10)) | |
2.7048138294 | |
Richardson extrapolation with 11 appropriately chosen terms gives | |
a value that is accurate to the indicated precision: | |
>>> from sympy import E | |
>>> from sympy.series.acceleration import richardson | |
>>> print(round(richardson(e, n, 10, 20).evalf(), 10)) | |
2.7182818285 | |
>>> print(round(E.evalf(), 10)) | |
2.7182818285 | |
Another useful application is to speed up convergence of series. | |
Computing 100 terms of the zeta(2) series 1/k**2 yields only | |
two accurate digits: | |
>>> from sympy.abc import k, n | |
>>> from sympy import Sum | |
>>> A = Sum(k**-2, (k, 1, n)) | |
>>> print(round(A.subs(n, 100).evalf(), 10)) | |
1.6349839002 | |
Richardson extrapolation performs much better: | |
>>> from sympy import pi | |
>>> print(round(richardson(A, n, 10, 20).evalf(), 10)) | |
1.6449340668 | |
>>> print(round(((pi**2)/6).evalf(), 10)) # Exact value | |
1.6449340668 | |
""" | |
s = S.Zero | |
for j in range(0, N + 1): | |
s += (A.subs(k, Integer(n + j)).doit() * (n + j)**N * | |
S.NegativeOne**(j + N) / (factorial(j) * factorial(N - j))) | |
return s | |
def shanks(A, k, n, m=1): | |
""" | |
Calculate an approximation for lim k->oo A(k) using the n-term Shanks | |
transformation S(A)(n). With m > 1, calculate the m-fold recursive | |
Shanks transformation S(S(...S(A)...))(n). | |
The Shanks transformation is useful for summing Taylor series that | |
converge slowly near a pole or singularity, e.g. for log(2): | |
>>> from sympy.abc import k, n | |
>>> from sympy import Sum, Integer | |
>>> from sympy.series.acceleration import shanks | |
>>> A = Sum(Integer(-1)**(k+1) / k, (k, 1, n)) | |
>>> print(round(A.subs(n, 100).doit().evalf(), 10)) | |
0.6881721793 | |
>>> print(round(shanks(A, n, 25).evalf(), 10)) | |
0.6931396564 | |
>>> print(round(shanks(A, n, 25, 5).evalf(), 10)) | |
0.6931471806 | |
The correct value is 0.6931471805599453094172321215. | |
""" | |
table = [A.subs(k, Integer(j)).doit() for j in range(n + m + 2)] | |
table2 = table[:] | |
for i in range(1, m + 1): | |
for j in range(i, n + m + 1): | |
x, y, z = table[j - 1], table[j], table[j + 1] | |
table2[j] = (z*x - y**2) / (z + x - 2*y) | |
table = table2[:] | |
return table[n] | |