Spaces:
Sleeping
Sleeping
from sympy.core import (S, pi, oo, Symbol, symbols, Rational, Integer, | |
GoldenRatio, EulerGamma, Catalan, Lambda, Dummy) | |
from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt, | |
gamma, sign, Max, Min, factorial, beta) | |
from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne) | |
from sympy.sets import Range | |
from sympy.logic import ITE | |
from sympy.codegen import For, aug_assign, Assignment | |
from sympy.testing.pytest import raises | |
from sympy.printing.rcode import RCodePrinter | |
from sympy.utilities.lambdify import implemented_function | |
from sympy.tensor import IndexedBase, Idx | |
from sympy.matrices import Matrix, MatrixSymbol | |
from sympy.printing.rcode import rcode | |
x, y, z = symbols('x,y,z') | |
def test_printmethod(): | |
class fabs(Abs): | |
def _rcode(self, printer): | |
return "abs(%s)" % printer._print(self.args[0]) | |
assert rcode(fabs(x)) == "abs(x)" | |
def test_rcode_sqrt(): | |
assert rcode(sqrt(x)) == "sqrt(x)" | |
assert rcode(x**0.5) == "sqrt(x)" | |
assert rcode(sqrt(x)) == "sqrt(x)" | |
def test_rcode_Pow(): | |
assert rcode(x**3) == "x^3" | |
assert rcode(x**(y**3)) == "x^(y^3)" | |
g = implemented_function('g', Lambda(x, 2*x)) | |
assert rcode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ | |
"(3.5*2*x)^(-x + y^x)/(x^2 + y)" | |
assert rcode(x**-1.0) == '1.0/x' | |
assert rcode(x**Rational(2, 3)) == 'x^(2.0/3.0)' | |
_cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi"), | |
(lambda base, exp: not exp.is_integer, "pow")] | |
assert rcode(x**3, user_functions={'Pow': _cond_cfunc}) == 'dpowi(x, 3)' | |
assert rcode(x**3.2, user_functions={'Pow': _cond_cfunc}) == 'pow(x, 3.2)' | |
def test_rcode_Max(): | |
# Test for gh-11926 | |
assert rcode(Max(x,x*x),user_functions={"Max":"my_max", "Pow":"my_pow"}) == 'my_max(x, my_pow(x, 2))' | |
def test_rcode_constants_mathh(): | |
assert rcode(exp(1)) == "exp(1)" | |
assert rcode(pi) == "pi" | |
assert rcode(oo) == "Inf" | |
assert rcode(-oo) == "-Inf" | |
def test_rcode_constants_other(): | |
assert rcode(2*GoldenRatio) == "GoldenRatio = 1.61803398874989;\n2*GoldenRatio" | |
assert rcode( | |
2*Catalan) == "Catalan = 0.915965594177219;\n2*Catalan" | |
assert rcode(2*EulerGamma) == "EulerGamma = 0.577215664901533;\n2*EulerGamma" | |
def test_rcode_Rational(): | |
assert rcode(Rational(3, 7)) == "3.0/7.0" | |
assert rcode(Rational(18, 9)) == "2" | |
assert rcode(Rational(3, -7)) == "-3.0/7.0" | |
assert rcode(Rational(-3, -7)) == "3.0/7.0" | |
assert rcode(x + Rational(3, 7)) == "x + 3.0/7.0" | |
assert rcode(Rational(3, 7)*x) == "(3.0/7.0)*x" | |
def test_rcode_Integer(): | |
assert rcode(Integer(67)) == "67" | |
assert rcode(Integer(-1)) == "-1" | |
def test_rcode_functions(): | |
assert rcode(sin(x) ** cos(x)) == "sin(x)^cos(x)" | |
assert rcode(factorial(x) + gamma(y)) == "factorial(x) + gamma(y)" | |
assert rcode(beta(Min(x, y), Max(x, y))) == "beta(min(x, y), max(x, y))" | |
def test_rcode_inline_function(): | |
x = symbols('x') | |
g = implemented_function('g', Lambda(x, 2*x)) | |
assert rcode(g(x)) == "2*x" | |
g = implemented_function('g', Lambda(x, 2*x/Catalan)) | |
assert rcode( | |
g(x)) == "Catalan = %s;\n2*x/Catalan" % Catalan.n() | |
A = IndexedBase('A') | |
i = Idx('i', symbols('n', integer=True)) | |
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x))) | |
res=rcode(g(A[i]), assign_to=A[i]) | |
ref=( | |
"for (i in 1:n){\n" | |
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n" | |
"}" | |
) | |
assert res == ref | |
def test_rcode_exceptions(): | |
assert rcode(ceiling(x)) == "ceiling(x)" | |
assert rcode(Abs(x)) == "abs(x)" | |
assert rcode(gamma(x)) == "gamma(x)" | |
def test_rcode_user_functions(): | |
x = symbols('x', integer=False) | |
n = symbols('n', integer=True) | |
custom_functions = { | |
"ceiling": "myceil", | |
"Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")], | |
} | |
assert rcode(ceiling(x), user_functions=custom_functions) == "myceil(x)" | |
assert rcode(Abs(x), user_functions=custom_functions) == "fabs(x)" | |
assert rcode(Abs(n), user_functions=custom_functions) == "abs(n)" | |
def test_rcode_boolean(): | |
assert rcode(True) == "True" | |
assert rcode(S.true) == "True" | |
assert rcode(False) == "False" | |
assert rcode(S.false) == "False" | |
assert rcode(x & y) == "x & y" | |
assert rcode(x | y) == "x | y" | |
assert rcode(~x) == "!x" | |
assert rcode(x & y & z) == "x & y & z" | |
assert rcode(x | y | z) == "x | y | z" | |
assert rcode((x & y) | z) == "z | x & y" | |
assert rcode((x | y) & z) == "z & (x | y)" | |
def test_rcode_Relational(): | |
assert rcode(Eq(x, y)) == "x == y" | |
assert rcode(Ne(x, y)) == "x != y" | |
assert rcode(Le(x, y)) == "x <= y" | |
assert rcode(Lt(x, y)) == "x < y" | |
assert rcode(Gt(x, y)) == "x > y" | |
assert rcode(Ge(x, y)) == "x >= y" | |
def test_rcode_Piecewise(): | |
expr = Piecewise((x, x < 1), (x**2, True)) | |
res=rcode(expr) | |
ref="ifelse(x < 1,x,x^2)" | |
assert res == ref | |
tau=Symbol("tau") | |
res=rcode(expr,tau) | |
ref="tau = ifelse(x < 1,x,x^2);" | |
assert res == ref | |
expr = 2*Piecewise((x, x < 1), (x**2, x<2), (x**3,True)) | |
assert rcode(expr) == "2*ifelse(x < 1,x,ifelse(x < 2,x^2,x^3))" | |
res = rcode(expr, assign_to='c') | |
assert res == "c = 2*ifelse(x < 1,x,ifelse(x < 2,x^2,x^3));" | |
# Check that Piecewise without a True (default) condition error | |
#expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) | |
#raises(ValueError, lambda: rcode(expr)) | |
expr = 2*Piecewise((x, x < 1), (x**2, x<2)) | |
assert(rcode(expr))== "2*ifelse(x < 1,x,ifelse(x < 2,x^2,NA))" | |
def test_rcode_sinc(): | |
from sympy.functions.elementary.trigonometric import sinc | |
expr = sinc(x) | |
res = rcode(expr) | |
ref = "(ifelse(x != 0,sin(x)/x,1))" | |
assert res == ref | |
def test_rcode_Piecewise_deep(): | |
p = rcode(2*Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True))) | |
assert p == "2*ifelse(x < 1,x,ifelse(x < 2,x + 1,x^2))" | |
expr = x*y*z + x**2 + y**2 + Piecewise((0, x < 0.5), (1, True)) + cos(z) - 1 | |
p = rcode(expr) | |
ref="x^2 + x*y*z + y^2 + ifelse(x < 0.5,0,1) + cos(z) - 1" | |
assert p == ref | |
ref="c = x^2 + x*y*z + y^2 + ifelse(x < 0.5,0,1) + cos(z) - 1;" | |
p = rcode(expr, assign_to='c') | |
assert p == ref | |
def test_rcode_ITE(): | |
expr = ITE(x < 1, y, z) | |
p = rcode(expr) | |
ref="ifelse(x < 1,y,z)" | |
assert p == ref | |
def test_rcode_settings(): | |
raises(TypeError, lambda: rcode(sin(x), method="garbage")) | |
def test_rcode_Indexed(): | |
n, m, o = symbols('n m o', integer=True) | |
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o) | |
p = RCodePrinter() | |
p._not_r = set() | |
x = IndexedBase('x')[j] | |
assert p._print_Indexed(x) == 'x[j]' | |
A = IndexedBase('A')[i, j] | |
assert p._print_Indexed(A) == 'A[i, j]' | |
B = IndexedBase('B')[i, j, k] | |
assert p._print_Indexed(B) == 'B[i, j, k]' | |
assert p._not_r == set() | |
def test_rcode_Indexed_without_looking_for_contraction(): | |
len_y = 5 | |
y = IndexedBase('y', shape=(len_y,)) | |
x = IndexedBase('x', shape=(len_y,)) | |
Dy = IndexedBase('Dy', shape=(len_y-1,)) | |
i = Idx('i', len_y-1) | |
e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i])) | |
code0 = rcode(e.rhs, assign_to=e.lhs, contract=False) | |
assert code0 == 'Dy[i] = (y[%s] - y[i])/(x[%s] - x[i]);' % (i + 1, i + 1) | |
def test_rcode_loops_matrix_vector(): | |
n, m = symbols('n m', integer=True) | |
A = IndexedBase('A') | |
x = IndexedBase('x') | |
y = IndexedBase('y') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
s = ( | |
'for (i in 1:m){\n' | |
' y[i] = 0;\n' | |
'}\n' | |
'for (i in 1:m){\n' | |
' for (j in 1:n){\n' | |
' y[i] = A[i, j]*x[j] + y[i];\n' | |
' }\n' | |
'}' | |
) | |
c = rcode(A[i, j]*x[j], assign_to=y[i]) | |
assert c == s | |
def test_dummy_loops(): | |
# the following line could also be | |
# [Dummy(s, integer=True) for s in 'im'] | |
# or [Dummy(integer=True) for s in 'im'] | |
i, m = symbols('i m', integer=True, cls=Dummy) | |
x = IndexedBase('x') | |
y = IndexedBase('y') | |
i = Idx(i, m) | |
expected = ( | |
'for (i_%(icount)i in 1:m_%(mcount)i){\n' | |
' y[i_%(icount)i] = x[i_%(icount)i];\n' | |
'}' | |
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index} | |
code = rcode(x[i], assign_to=y[i]) | |
assert code == expected | |
def test_rcode_loops_add(): | |
n, m = symbols('n m', integer=True) | |
A = IndexedBase('A') | |
x = IndexedBase('x') | |
y = IndexedBase('y') | |
z = IndexedBase('z') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
s = ( | |
'for (i in 1:m){\n' | |
' y[i] = x[i] + z[i];\n' | |
'}\n' | |
'for (i in 1:m){\n' | |
' for (j in 1:n){\n' | |
' y[i] = A[i, j]*x[j] + y[i];\n' | |
' }\n' | |
'}' | |
) | |
c = rcode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) | |
assert c == s | |
def test_rcode_loops_multiple_contractions(): | |
n, m, o, p = symbols('n m o p', integer=True) | |
a = IndexedBase('a') | |
b = IndexedBase('b') | |
y = IndexedBase('y') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
k = Idx('k', o) | |
l = Idx('l', p) | |
s = ( | |
'for (i in 1:m){\n' | |
' y[i] = 0;\n' | |
'}\n' | |
'for (i in 1:m){\n' | |
' for (j in 1:n){\n' | |
' for (k in 1:o){\n' | |
' for (l in 1:p){\n' | |
' y[i] = a[i, j, k, l]*b[j, k, l] + y[i];\n' | |
' }\n' | |
' }\n' | |
' }\n' | |
'}' | |
) | |
c = rcode(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) | |
assert c == s | |
def test_rcode_loops_addfactor(): | |
n, m, o, p = symbols('n m o p', integer=True) | |
a = IndexedBase('a') | |
b = IndexedBase('b') | |
c = IndexedBase('c') | |
y = IndexedBase('y') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
k = Idx('k', o) | |
l = Idx('l', p) | |
s = ( | |
'for (i in 1:m){\n' | |
' y[i] = 0;\n' | |
'}\n' | |
'for (i in 1:m){\n' | |
' for (j in 1:n){\n' | |
' for (k in 1:o){\n' | |
' for (l in 1:p){\n' | |
' y[i] = (a[i, j, k, l] + b[i, j, k, l])*c[j, k, l] + y[i];\n' | |
' }\n' | |
' }\n' | |
' }\n' | |
'}' | |
) | |
c = rcode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i]) | |
assert c == s | |
def test_rcode_loops_multiple_terms(): | |
n, m, o, p = symbols('n m o p', integer=True) | |
a = IndexedBase('a') | |
b = IndexedBase('b') | |
c = IndexedBase('c') | |
y = IndexedBase('y') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
k = Idx('k', o) | |
s0 = ( | |
'for (i in 1:m){\n' | |
' y[i] = 0;\n' | |
'}\n' | |
) | |
s1 = ( | |
'for (i in 1:m){\n' | |
' for (j in 1:n){\n' | |
' for (k in 1:o){\n' | |
' y[i] = b[j]*b[k]*c[i, j, k] + y[i];\n' | |
' }\n' | |
' }\n' | |
'}\n' | |
) | |
s2 = ( | |
'for (i in 1:m){\n' | |
' for (k in 1:o){\n' | |
' y[i] = a[i, k]*b[k] + y[i];\n' | |
' }\n' | |
'}\n' | |
) | |
s3 = ( | |
'for (i in 1:m){\n' | |
' for (j in 1:n){\n' | |
' y[i] = a[i, j]*b[j] + y[i];\n' | |
' }\n' | |
'}\n' | |
) | |
c = rcode( | |
b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i]) | |
ref={} | |
ref[0] = s0 + s1 + s2 + s3[:-1] | |
ref[1] = s0 + s1 + s3 + s2[:-1] | |
ref[2] = s0 + s2 + s1 + s3[:-1] | |
ref[3] = s0 + s2 + s3 + s1[:-1] | |
ref[4] = s0 + s3 + s1 + s2[:-1] | |
ref[5] = s0 + s3 + s2 + s1[:-1] | |
assert (c == ref[0] or | |
c == ref[1] or | |
c == ref[2] or | |
c == ref[3] or | |
c == ref[4] or | |
c == ref[5]) | |
def test_dereference_printing(): | |
expr = x + y + sin(z) + z | |
assert rcode(expr, dereference=[z]) == "x + y + (*z) + sin((*z))" | |
def test_Matrix_printing(): | |
# Test returning a Matrix | |
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)]) | |
A = MatrixSymbol('A', 3, 1) | |
p = rcode(mat, A) | |
assert p == ( | |
"A[0] = x*y;\n" | |
"A[1] = ifelse(y > 0,x + 2,y);\n" | |
"A[2] = sin(z);") | |
# Test using MatrixElements in expressions | |
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0] | |
p = rcode(expr) | |
assert p == ("ifelse(x > 0,2*A[2],A[2]) + sin(A[1]) + A[0]") | |
# Test using MatrixElements in a Matrix | |
q = MatrixSymbol('q', 5, 1) | |
M = MatrixSymbol('M', 3, 3) | |
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])], | |
[q[1,0] + q[2,0], q[3, 0], 5], | |
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]]) | |
assert rcode(m, M) == ( | |
"M[0] = sin(q[1]);\n" | |
"M[1] = 0;\n" | |
"M[2] = cos(q[2]);\n" | |
"M[3] = q[1] + q[2];\n" | |
"M[4] = q[3];\n" | |
"M[5] = 5;\n" | |
"M[6] = 2*q[4]/q[1];\n" | |
"M[7] = sqrt(q[0]) + 4;\n" | |
"M[8] = 0;") | |
def test_rcode_sgn(): | |
expr = sign(x) * y | |
assert rcode(expr) == 'y*sign(x)' | |
p = rcode(expr, 'z') | |
assert p == 'z = y*sign(x);' | |
p = rcode(sign(2 * x + x**2) * x + x**2) | |
assert p == "x^2 + x*sign(x^2 + 2*x)" | |
expr = sign(cos(x)) | |
p = rcode(expr) | |
assert p == 'sign(cos(x))' | |
def test_rcode_Assignment(): | |
assert rcode(Assignment(x, y + z)) == 'x = y + z;' | |
assert rcode(aug_assign(x, '+', y + z)) == 'x += y + z;' | |
def test_rcode_For(): | |
f = For(x, Range(0, 10, 2), [aug_assign(y, '*', x)]) | |
sol = rcode(f) | |
assert sol == ("for(x in seq(from=0, to=9, by=2){\n" | |
" y *= x;\n" | |
"}") | |
def test_MatrixElement_printing(): | |
# test cases for issue #11821 | |
A = MatrixSymbol("A", 1, 3) | |
B = MatrixSymbol("B", 1, 3) | |
C = MatrixSymbol("C", 1, 3) | |
assert(rcode(A[0, 0]) == "A[0]") | |
assert(rcode(3 * A[0, 0]) == "3*A[0]") | |
F = C[0, 0].subs(C, A - B) | |
assert(rcode(F) == "(A - B)[0]") | |