Spaces:
Sleeping
Sleeping
from sympy.calculus.accumulationbounds import AccumBounds | |
from sympy.concrete.summations import Sum | |
from sympy.core.basic import Basic | |
from sympy.core.containers import Tuple | |
from sympy.core.function import Derivative, Lambda, diff, Function | |
from sympy.core.numbers import (zoo, Float, Integer, I, oo, pi, E, | |
Rational) | |
from sympy.core.relational import Lt, Ge, Ne, Eq | |
from sympy.core.singleton import S | |
from sympy.core.symbol import symbols, Symbol | |
from sympy.core.sympify import sympify | |
from sympy.functions.combinatorial.factorials import (factorial2, | |
binomial, factorial) | |
from sympy.functions.combinatorial.numbers import (lucas, bell, | |
catalan, euler, tribonacci, fibonacci, bernoulli, primenu, primeomega, | |
totient, reduced_totient) | |
from sympy.functions.elementary.complexes import re, im, conjugate, Abs | |
from sympy.functions.elementary.exponential import exp, LambertW, log | |
from sympy.functions.elementary.hyperbolic import (tanh, acoth, atanh, | |
coth, asinh, acsch, asech, acosh, csch, sinh, cosh, sech) | |
from sympy.functions.elementary.integers import ceiling, floor | |
from sympy.functions.elementary.miscellaneous import Max, Min | |
from sympy.functions.elementary.trigonometric import (csc, sec, tan, | |
atan, sin, asec, cot, cos, acot, acsc, asin, acos) | |
from sympy.functions.special.delta_functions import Heaviside | |
from sympy.functions.special.elliptic_integrals import (elliptic_pi, | |
elliptic_f, elliptic_k, elliptic_e) | |
from sympy.functions.special.error_functions import (fresnelc, | |
fresnels, Ei, expint) | |
from sympy.functions.special.gamma_functions import (gamma, uppergamma, | |
lowergamma) | |
from sympy.functions.special.mathieu_functions import (mathieusprime, | |
mathieus, mathieucprime, mathieuc) | |
from sympy.functions.special.polynomials import (jacobi, chebyshevu, | |
chebyshevt, hermite, assoc_legendre, gegenbauer, assoc_laguerre, | |
legendre, laguerre) | |
from sympy.functions.special.singularity_functions import SingularityFunction | |
from sympy.functions.special.zeta_functions import (polylog, stieltjes, | |
lerchphi, dirichlet_eta, zeta) | |
from sympy.integrals.integrals import Integral | |
from sympy.logic.boolalg import (Xor, Or, false, true, And, Equivalent, | |
Implies, Not) | |
from sympy.matrices.dense import Matrix | |
from sympy.matrices.expressions.determinant import Determinant | |
from sympy.matrices.expressions.matexpr import MatrixSymbol | |
from sympy.physics.quantum import (ComplexSpace, FockSpace, hbar, | |
HilbertSpace, Dagger) | |
from sympy.printing.mathml import (MathMLPresentationPrinter, | |
MathMLPrinter, MathMLContentPrinter, mathml) | |
from sympy.series.limits import Limit | |
from sympy.sets.contains import Contains | |
from sympy.sets.fancysets import Range | |
from sympy.sets.sets import (Interval, Union, SymmetricDifference, | |
Complement, FiniteSet, Intersection, ProductSet) | |
from sympy.stats.rv import RandomSymbol | |
from sympy.tensor.indexed import IndexedBase | |
from sympy.vector import (Divergence, CoordSys3D, Cross, Curl, Dot, | |
Laplacian, Gradient) | |
from sympy.testing.pytest import raises | |
x, y, z, a, b, c, d, e, n = symbols('x:z a:e n') | |
mp = MathMLContentPrinter() | |
mpp = MathMLPresentationPrinter() | |
def test_mathml_printer(): | |
m = MathMLPrinter() | |
assert m.doprint(1+x) == mp.doprint(1+x) | |
def test_content_printmethod(): | |
assert mp.doprint(1 + x) == '<apply><plus/><ci>x</ci><cn>1</cn></apply>' | |
def test_content_mathml_core(): | |
mml_1 = mp._print(1 + x) | |
assert mml_1.nodeName == 'apply' | |
nodes = mml_1.childNodes | |
assert len(nodes) == 3 | |
assert nodes[0].nodeName == 'plus' | |
assert nodes[0].hasChildNodes() is False | |
assert nodes[0].nodeValue is None | |
assert nodes[1].nodeName in ['cn', 'ci'] | |
if nodes[1].nodeName == 'cn': | |
assert nodes[1].childNodes[0].nodeValue == '1' | |
assert nodes[2].childNodes[0].nodeValue == 'x' | |
else: | |
assert nodes[1].childNodes[0].nodeValue == 'x' | |
assert nodes[2].childNodes[0].nodeValue == '1' | |
mml_2 = mp._print(x**2) | |
assert mml_2.nodeName == 'apply' | |
nodes = mml_2.childNodes | |
assert nodes[1].childNodes[0].nodeValue == 'x' | |
assert nodes[2].childNodes[0].nodeValue == '2' | |
mml_3 = mp._print(2*x) | |
assert mml_3.nodeName == 'apply' | |
nodes = mml_3.childNodes | |
assert nodes[0].nodeName == 'times' | |
assert nodes[1].childNodes[0].nodeValue == '2' | |
assert nodes[2].childNodes[0].nodeValue == 'x' | |
mml = mp._print(Float(1.0, 2)*x) | |
assert mml.nodeName == 'apply' | |
nodes = mml.childNodes | |
assert nodes[0].nodeName == 'times' | |
assert nodes[1].childNodes[0].nodeValue == '1.0' | |
assert nodes[2].childNodes[0].nodeValue == 'x' | |
def test_content_mathml_functions(): | |
mml_1 = mp._print(sin(x)) | |
assert mml_1.nodeName == 'apply' | |
assert mml_1.childNodes[0].nodeName == 'sin' | |
assert mml_1.childNodes[1].nodeName == 'ci' | |
mml_2 = mp._print(diff(sin(x), x, evaluate=False)) | |
assert mml_2.nodeName == 'apply' | |
assert mml_2.childNodes[0].nodeName == 'diff' | |
assert mml_2.childNodes[1].nodeName == 'bvar' | |
assert mml_2.childNodes[1].childNodes[ | |
0].nodeName == 'ci' # below bvar there's <ci>x/ci> | |
mml_3 = mp._print(diff(cos(x*y), x, evaluate=False)) | |
assert mml_3.nodeName == 'apply' | |
assert mml_3.childNodes[0].nodeName == 'partialdiff' | |
assert mml_3.childNodes[1].nodeName == 'bvar' | |
assert mml_3.childNodes[1].childNodes[ | |
0].nodeName == 'ci' # below bvar there's <ci>x/ci> | |
mml_4 = mp._print(Lambda((x, y), x * y)) | |
assert mml_4.nodeName == 'lambda' | |
assert mml_4.childNodes[0].nodeName == 'bvar' | |
assert mml_4.childNodes[0].childNodes[ | |
0].nodeName == 'ci' # below bvar there's <ci>x/ci> | |
assert mml_4.childNodes[1].nodeName == 'bvar' | |
assert mml_4.childNodes[1].childNodes[ | |
0].nodeName == 'ci' # below bvar there's <ci>y/ci> | |
assert mml_4.childNodes[2].nodeName == 'apply' | |
def test_content_mathml_limits(): | |
# XXX No unevaluated limits | |
lim_fun = sin(x)/x | |
mml_1 = mp._print(Limit(lim_fun, x, 0)) | |
assert mml_1.childNodes[0].nodeName == 'limit' | |
assert mml_1.childNodes[1].nodeName == 'bvar' | |
assert mml_1.childNodes[2].nodeName == 'lowlimit' | |
assert mml_1.childNodes[3].toxml() == mp._print(lim_fun).toxml() | |
def test_content_mathml_integrals(): | |
integrand = x | |
mml_1 = mp._print(Integral(integrand, (x, 0, 1))) | |
assert mml_1.childNodes[0].nodeName == 'int' | |
assert mml_1.childNodes[1].nodeName == 'bvar' | |
assert mml_1.childNodes[2].nodeName == 'lowlimit' | |
assert mml_1.childNodes[3].nodeName == 'uplimit' | |
assert mml_1.childNodes[4].toxml() == mp._print(integrand).toxml() | |
def test_content_mathml_matrices(): | |
A = Matrix([1, 2, 3]) | |
B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]]) | |
mll_1 = mp._print(A) | |
assert mll_1.childNodes[0].nodeName == 'matrixrow' | |
assert mll_1.childNodes[0].childNodes[0].nodeName == 'cn' | |
assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeValue == '1' | |
assert mll_1.childNodes[1].nodeName == 'matrixrow' | |
assert mll_1.childNodes[1].childNodes[0].nodeName == 'cn' | |
assert mll_1.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' | |
assert mll_1.childNodes[2].nodeName == 'matrixrow' | |
assert mll_1.childNodes[2].childNodes[0].nodeName == 'cn' | |
assert mll_1.childNodes[2].childNodes[0].childNodes[0].nodeValue == '3' | |
mll_2 = mp._print(B) | |
assert mll_2.childNodes[0].nodeName == 'matrixrow' | |
assert mll_2.childNodes[0].childNodes[0].nodeName == 'cn' | |
assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeValue == '0' | |
assert mll_2.childNodes[0].childNodes[1].nodeName == 'cn' | |
assert mll_2.childNodes[0].childNodes[1].childNodes[0].nodeValue == '5' | |
assert mll_2.childNodes[0].childNodes[2].nodeName == 'cn' | |
assert mll_2.childNodes[0].childNodes[2].childNodes[0].nodeValue == '4' | |
assert mll_2.childNodes[1].nodeName == 'matrixrow' | |
assert mll_2.childNodes[1].childNodes[0].nodeName == 'cn' | |
assert mll_2.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' | |
assert mll_2.childNodes[1].childNodes[1].nodeName == 'cn' | |
assert mll_2.childNodes[1].childNodes[1].childNodes[0].nodeValue == '3' | |
assert mll_2.childNodes[1].childNodes[2].nodeName == 'cn' | |
assert mll_2.childNodes[1].childNodes[2].childNodes[0].nodeValue == '1' | |
assert mll_2.childNodes[2].nodeName == 'matrixrow' | |
assert mll_2.childNodes[2].childNodes[0].nodeName == 'cn' | |
assert mll_2.childNodes[2].childNodes[0].childNodes[0].nodeValue == '9' | |
assert mll_2.childNodes[2].childNodes[1].nodeName == 'cn' | |
assert mll_2.childNodes[2].childNodes[1].childNodes[0].nodeValue == '7' | |
assert mll_2.childNodes[2].childNodes[2].nodeName == 'cn' | |
assert mll_2.childNodes[2].childNodes[2].childNodes[0].nodeValue == '9' | |
def test_content_mathml_sums(): | |
summand = x | |
mml_1 = mp._print(Sum(summand, (x, 1, 10))) | |
assert mml_1.childNodes[0].nodeName == 'sum' | |
assert mml_1.childNodes[1].nodeName == 'bvar' | |
assert mml_1.childNodes[2].nodeName == 'lowlimit' | |
assert mml_1.childNodes[3].nodeName == 'uplimit' | |
assert mml_1.childNodes[4].toxml() == mp._print(summand).toxml() | |
def test_content_mathml_tuples(): | |
mml_1 = mp._print([2]) | |
assert mml_1.nodeName == 'list' | |
assert mml_1.childNodes[0].nodeName == 'cn' | |
assert len(mml_1.childNodes) == 1 | |
mml_2 = mp._print([2, Integer(1)]) | |
assert mml_2.nodeName == 'list' | |
assert mml_2.childNodes[0].nodeName == 'cn' | |
assert mml_2.childNodes[1].nodeName == 'cn' | |
assert len(mml_2.childNodes) == 2 | |
def test_content_mathml_add(): | |
mml = mp._print(x**5 - x**4 + x) | |
assert mml.childNodes[0].nodeName == 'plus' | |
assert mml.childNodes[1].childNodes[0].nodeName == 'minus' | |
assert mml.childNodes[1].childNodes[1].nodeName == 'apply' | |
def test_content_mathml_Rational(): | |
mml_1 = mp._print(Rational(1, 1)) | |
"""should just return a number""" | |
assert mml_1.nodeName == 'cn' | |
mml_2 = mp._print(Rational(2, 5)) | |
assert mml_2.childNodes[0].nodeName == 'divide' | |
def test_content_mathml_constants(): | |
mml = mp._print(I) | |
assert mml.nodeName == 'imaginaryi' | |
mml = mp._print(E) | |
assert mml.nodeName == 'exponentiale' | |
mml = mp._print(oo) | |
assert mml.nodeName == 'infinity' | |
mml = mp._print(pi) | |
assert mml.nodeName == 'pi' | |
assert mathml(hbar) == '<hbar/>' | |
assert mathml(S.TribonacciConstant) == '<tribonacciconstant/>' | |
assert mathml(S.GoldenRatio) == '<cn>φ</cn>' | |
mml = mathml(S.EulerGamma) | |
assert mml == '<eulergamma/>' | |
mml = mathml(S.EmptySet) | |
assert mml == '<emptyset/>' | |
mml = mathml(S.true) | |
assert mml == '<true/>' | |
mml = mathml(S.false) | |
assert mml == '<false/>' | |
mml = mathml(S.NaN) | |
assert mml == '<notanumber/>' | |
def test_content_mathml_trig(): | |
mml = mp._print(sin(x)) | |
assert mml.childNodes[0].nodeName == 'sin' | |
mml = mp._print(cos(x)) | |
assert mml.childNodes[0].nodeName == 'cos' | |
mml = mp._print(tan(x)) | |
assert mml.childNodes[0].nodeName == 'tan' | |
mml = mp._print(cot(x)) | |
assert mml.childNodes[0].nodeName == 'cot' | |
mml = mp._print(csc(x)) | |
assert mml.childNodes[0].nodeName == 'csc' | |
mml = mp._print(sec(x)) | |
assert mml.childNodes[0].nodeName == 'sec' | |
mml = mp._print(asin(x)) | |
assert mml.childNodes[0].nodeName == 'arcsin' | |
mml = mp._print(acos(x)) | |
assert mml.childNodes[0].nodeName == 'arccos' | |
mml = mp._print(atan(x)) | |
assert mml.childNodes[0].nodeName == 'arctan' | |
mml = mp._print(acot(x)) | |
assert mml.childNodes[0].nodeName == 'arccot' | |
mml = mp._print(acsc(x)) | |
assert mml.childNodes[0].nodeName == 'arccsc' | |
mml = mp._print(asec(x)) | |
assert mml.childNodes[0].nodeName == 'arcsec' | |
mml = mp._print(sinh(x)) | |
assert mml.childNodes[0].nodeName == 'sinh' | |
mml = mp._print(cosh(x)) | |
assert mml.childNodes[0].nodeName == 'cosh' | |
mml = mp._print(tanh(x)) | |
assert mml.childNodes[0].nodeName == 'tanh' | |
mml = mp._print(coth(x)) | |
assert mml.childNodes[0].nodeName == 'coth' | |
mml = mp._print(csch(x)) | |
assert mml.childNodes[0].nodeName == 'csch' | |
mml = mp._print(sech(x)) | |
assert mml.childNodes[0].nodeName == 'sech' | |
mml = mp._print(asinh(x)) | |
assert mml.childNodes[0].nodeName == 'arcsinh' | |
mml = mp._print(atanh(x)) | |
assert mml.childNodes[0].nodeName == 'arctanh' | |
mml = mp._print(acosh(x)) | |
assert mml.childNodes[0].nodeName == 'arccosh' | |
mml = mp._print(acoth(x)) | |
assert mml.childNodes[0].nodeName == 'arccoth' | |
mml = mp._print(acsch(x)) | |
assert mml.childNodes[0].nodeName == 'arccsch' | |
mml = mp._print(asech(x)) | |
assert mml.childNodes[0].nodeName == 'arcsech' | |
def test_content_mathml_relational(): | |
mml_1 = mp._print(Eq(x, 1)) | |
assert mml_1.nodeName == 'apply' | |
assert mml_1.childNodes[0].nodeName == 'eq' | |
assert mml_1.childNodes[1].nodeName == 'ci' | |
assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x' | |
assert mml_1.childNodes[2].nodeName == 'cn' | |
assert mml_1.childNodes[2].childNodes[0].nodeValue == '1' | |
mml_2 = mp._print(Ne(1, x)) | |
assert mml_2.nodeName == 'apply' | |
assert mml_2.childNodes[0].nodeName == 'neq' | |
assert mml_2.childNodes[1].nodeName == 'cn' | |
assert mml_2.childNodes[1].childNodes[0].nodeValue == '1' | |
assert mml_2.childNodes[2].nodeName == 'ci' | |
assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x' | |
mml_3 = mp._print(Ge(1, x)) | |
assert mml_3.nodeName == 'apply' | |
assert mml_3.childNodes[0].nodeName == 'geq' | |
assert mml_3.childNodes[1].nodeName == 'cn' | |
assert mml_3.childNodes[1].childNodes[0].nodeValue == '1' | |
assert mml_3.childNodes[2].nodeName == 'ci' | |
assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x' | |
mml_4 = mp._print(Lt(1, x)) | |
assert mml_4.nodeName == 'apply' | |
assert mml_4.childNodes[0].nodeName == 'lt' | |
assert mml_4.childNodes[1].nodeName == 'cn' | |
assert mml_4.childNodes[1].childNodes[0].nodeValue == '1' | |
assert mml_4.childNodes[2].nodeName == 'ci' | |
assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x' | |
def test_content_symbol(): | |
mml = mp._print(x) | |
assert mml.nodeName == 'ci' | |
assert mml.childNodes[0].nodeValue == 'x' | |
del mml | |
mml = mp._print(Symbol("x^2")) | |
assert mml.nodeName == 'ci' | |
assert mml.childNodes[0].nodeName == 'mml:msup' | |
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' | |
del mml | |
mml = mp._print(Symbol("x__2")) | |
assert mml.nodeName == 'ci' | |
assert mml.childNodes[0].nodeName == 'mml:msup' | |
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' | |
del mml | |
mml = mp._print(Symbol("x_2")) | |
assert mml.nodeName == 'ci' | |
assert mml.childNodes[0].nodeName == 'mml:msub' | |
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' | |
del mml | |
mml = mp._print(Symbol("x^3_2")) | |
assert mml.nodeName == 'ci' | |
assert mml.childNodes[0].nodeName == 'mml:msubsup' | |
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' | |
assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3' | |
del mml | |
mml = mp._print(Symbol("x__3_2")) | |
assert mml.nodeName == 'ci' | |
assert mml.childNodes[0].nodeName == 'mml:msubsup' | |
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' | |
assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3' | |
del mml | |
mml = mp._print(Symbol("x_2_a")) | |
assert mml.nodeName == 'ci' | |
assert mml.childNodes[0].nodeName == 'mml:msub' | |
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' | |
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ | |
0].nodeValue == '2' | |
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' | |
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ | |
0].nodeValue == ' ' | |
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ | |
0].nodeValue == 'a' | |
del mml | |
mml = mp._print(Symbol("x^2^a")) | |
assert mml.nodeName == 'ci' | |
assert mml.childNodes[0].nodeName == 'mml:msup' | |
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' | |
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ | |
0].nodeValue == '2' | |
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' | |
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ | |
0].nodeValue == ' ' | |
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ | |
0].nodeValue == 'a' | |
del mml | |
mml = mp._print(Symbol("x__2__a")) | |
assert mml.nodeName == 'ci' | |
assert mml.childNodes[0].nodeName == 'mml:msup' | |
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' | |
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ | |
0].nodeValue == '2' | |
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' | |
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ | |
0].nodeValue == ' ' | |
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' | |
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ | |
0].nodeValue == 'a' | |
del mml | |
def test_content_mathml_greek(): | |
mml = mp._print(Symbol('alpha')) | |
assert mml.nodeName == 'ci' | |
assert mml.childNodes[0].nodeValue == '\N{GREEK SMALL LETTER ALPHA}' | |
assert mp.doprint(Symbol('alpha')) == '<ci>α</ci>' | |
assert mp.doprint(Symbol('beta')) == '<ci>β</ci>' | |
assert mp.doprint(Symbol('gamma')) == '<ci>γ</ci>' | |
assert mp.doprint(Symbol('delta')) == '<ci>δ</ci>' | |
assert mp.doprint(Symbol('epsilon')) == '<ci>ε</ci>' | |
assert mp.doprint(Symbol('zeta')) == '<ci>ζ</ci>' | |
assert mp.doprint(Symbol('eta')) == '<ci>η</ci>' | |
assert mp.doprint(Symbol('theta')) == '<ci>θ</ci>' | |
assert mp.doprint(Symbol('iota')) == '<ci>ι</ci>' | |
assert mp.doprint(Symbol('kappa')) == '<ci>κ</ci>' | |
assert mp.doprint(Symbol('lambda')) == '<ci>λ</ci>' | |
assert mp.doprint(Symbol('mu')) == '<ci>μ</ci>' | |
assert mp.doprint(Symbol('nu')) == '<ci>ν</ci>' | |
assert mp.doprint(Symbol('xi')) == '<ci>ξ</ci>' | |
assert mp.doprint(Symbol('omicron')) == '<ci>ο</ci>' | |
assert mp.doprint(Symbol('pi')) == '<ci>π</ci>' | |
assert mp.doprint(Symbol('rho')) == '<ci>ρ</ci>' | |
assert mp.doprint(Symbol('varsigma')) == '<ci>ς</ci>' | |
assert mp.doprint(Symbol('sigma')) == '<ci>σ</ci>' | |
assert mp.doprint(Symbol('tau')) == '<ci>τ</ci>' | |
assert mp.doprint(Symbol('upsilon')) == '<ci>υ</ci>' | |
assert mp.doprint(Symbol('phi')) == '<ci>φ</ci>' | |
assert mp.doprint(Symbol('chi')) == '<ci>χ</ci>' | |
assert mp.doprint(Symbol('psi')) == '<ci>ψ</ci>' | |
assert mp.doprint(Symbol('omega')) == '<ci>ω</ci>' | |
assert mp.doprint(Symbol('Alpha')) == '<ci>Α</ci>' | |
assert mp.doprint(Symbol('Beta')) == '<ci>Β</ci>' | |
assert mp.doprint(Symbol('Gamma')) == '<ci>Γ</ci>' | |
assert mp.doprint(Symbol('Delta')) == '<ci>Δ</ci>' | |
assert mp.doprint(Symbol('Epsilon')) == '<ci>Ε</ci>' | |
assert mp.doprint(Symbol('Zeta')) == '<ci>Ζ</ci>' | |
assert mp.doprint(Symbol('Eta')) == '<ci>Η</ci>' | |
assert mp.doprint(Symbol('Theta')) == '<ci>Θ</ci>' | |
assert mp.doprint(Symbol('Iota')) == '<ci>Ι</ci>' | |
assert mp.doprint(Symbol('Kappa')) == '<ci>Κ</ci>' | |
assert mp.doprint(Symbol('Lambda')) == '<ci>Λ</ci>' | |
assert mp.doprint(Symbol('Mu')) == '<ci>Μ</ci>' | |
assert mp.doprint(Symbol('Nu')) == '<ci>Ν</ci>' | |
assert mp.doprint(Symbol('Xi')) == '<ci>Ξ</ci>' | |
assert mp.doprint(Symbol('Omicron')) == '<ci>Ο</ci>' | |
assert mp.doprint(Symbol('Pi')) == '<ci>Π</ci>' | |
assert mp.doprint(Symbol('Rho')) == '<ci>Ρ</ci>' | |
assert mp.doprint(Symbol('Sigma')) == '<ci>Σ</ci>' | |
assert mp.doprint(Symbol('Tau')) == '<ci>Τ</ci>' | |
assert mp.doprint(Symbol('Upsilon')) == '<ci>Υ</ci>' | |
assert mp.doprint(Symbol('Phi')) == '<ci>Φ</ci>' | |
assert mp.doprint(Symbol('Chi')) == '<ci>Χ</ci>' | |
assert mp.doprint(Symbol('Psi')) == '<ci>Ψ</ci>' | |
assert mp.doprint(Symbol('Omega')) == '<ci>Ω</ci>' | |
def test_content_mathml_order(): | |
expr = x**3 + x**2*y + 3*x*y**3 + y**4 | |
mp = MathMLContentPrinter({'order': 'lex'}) | |
mml = mp._print(expr) | |
assert mml.childNodes[1].childNodes[0].nodeName == 'power' | |
assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'x' | |
assert mml.childNodes[1].childNodes[2].childNodes[0].data == '3' | |
assert mml.childNodes[4].childNodes[0].nodeName == 'power' | |
assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'y' | |
assert mml.childNodes[4].childNodes[2].childNodes[0].data == '4' | |
mp = MathMLContentPrinter({'order': 'rev-lex'}) | |
mml = mp._print(expr) | |
assert mml.childNodes[1].childNodes[0].nodeName == 'power' | |
assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'y' | |
assert mml.childNodes[1].childNodes[2].childNodes[0].data == '4' | |
assert mml.childNodes[4].childNodes[0].nodeName == 'power' | |
assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'x' | |
assert mml.childNodes[4].childNodes[2].childNodes[0].data == '3' | |
def test_content_settings(): | |
raises(TypeError, lambda: mathml(x, method="garbage")) | |
def test_content_mathml_logic(): | |
assert mathml(And(x, y)) == '<apply><and/><ci>x</ci><ci>y</ci></apply>' | |
assert mathml(Or(x, y)) == '<apply><or/><ci>x</ci><ci>y</ci></apply>' | |
assert mathml(Xor(x, y)) == '<apply><xor/><ci>x</ci><ci>y</ci></apply>' | |
assert mathml(Implies(x, y)) == '<apply><implies/><ci>x</ci><ci>y</ci></apply>' | |
assert mathml(Not(x)) == '<apply><not/><ci>x</ci></apply>' | |
def test_content_finite_sets(): | |
assert mathml(FiniteSet(a)) == '<set><ci>a</ci></set>' | |
assert mathml(FiniteSet(a, b)) == '<set><ci>a</ci><ci>b</ci></set>' | |
assert mathml(FiniteSet(FiniteSet(a, b), c)) == \ | |
'<set><ci>c</ci><set><ci>a</ci><ci>b</ci></set></set>' | |
A = FiniteSet(a) | |
B = FiniteSet(b) | |
C = FiniteSet(c) | |
D = FiniteSet(d) | |
U1 = Union(A, B, evaluate=False) | |
U2 = Union(C, D, evaluate=False) | |
I1 = Intersection(A, B, evaluate=False) | |
I2 = Intersection(C, D, evaluate=False) | |
C1 = Complement(A, B, evaluate=False) | |
C2 = Complement(C, D, evaluate=False) | |
# XXX ProductSet does not support evaluate keyword | |
P1 = ProductSet(A, B) | |
P2 = ProductSet(C, D) | |
assert mathml(U1) == \ | |
'<apply><union/><set><ci>a</ci></set><set><ci>b</ci></set></apply>' | |
assert mathml(I1) == \ | |
'<apply><intersect/><set><ci>a</ci></set><set><ci>b</ci></set>' \ | |
'</apply>' | |
assert mathml(C1) == \ | |
'<apply><setdiff/><set><ci>a</ci></set><set><ci>b</ci></set></apply>' | |
assert mathml(P1) == \ | |
'<apply><cartesianproduct/><set><ci>a</ci></set><set><ci>b</ci>' \ | |
'</set></apply>' | |
assert mathml(Intersection(A, U2, evaluate=False)) == \ | |
'<apply><intersect/><set><ci>a</ci></set><apply><union/><set>' \ | |
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' | |
assert mathml(Intersection(U1, U2, evaluate=False)) == \ | |
'<apply><intersect/><apply><union/><set><ci>a</ci></set><set>' \ | |
'<ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \ | |
'<set><ci>d</ci></set></apply></apply>' | |
# XXX Does the parenthesis appear correctly for these examples in mathjax? | |
assert mathml(Intersection(C1, C2, evaluate=False)) == \ | |
'<apply><intersect/><apply><setdiff/><set><ci>a</ci></set><set>' \ | |
'<ci>b</ci></set></apply><apply><setdiff/><set><ci>c</ci></set>' \ | |
'<set><ci>d</ci></set></apply></apply>' | |
assert mathml(Intersection(P1, P2, evaluate=False)) == \ | |
'<apply><intersect/><apply><cartesianproduct/><set><ci>a</ci></set>' \ | |
'<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \ | |
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' | |
assert mathml(Union(A, I2, evaluate=False)) == \ | |
'<apply><union/><set><ci>a</ci></set><apply><intersect/><set>' \ | |
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' | |
assert mathml(Union(I1, I2, evaluate=False)) == \ | |
'<apply><union/><apply><intersect/><set><ci>a</ci></set><set>' \ | |
'<ci>b</ci></set></apply><apply><intersect/><set><ci>c</ci></set>' \ | |
'<set><ci>d</ci></set></apply></apply>' | |
assert mathml(Union(C1, C2, evaluate=False)) == \ | |
'<apply><union/><apply><setdiff/><set><ci>a</ci></set><set>' \ | |
'<ci>b</ci></set></apply><apply><setdiff/><set><ci>c</ci></set>' \ | |
'<set><ci>d</ci></set></apply></apply>' | |
assert mathml(Union(P1, P2, evaluate=False)) == \ | |
'<apply><union/><apply><cartesianproduct/><set><ci>a</ci></set>' \ | |
'<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \ | |
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' | |
assert mathml(Complement(A, C2, evaluate=False)) == \ | |
'<apply><setdiff/><set><ci>a</ci></set><apply><setdiff/><set>' \ | |
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' | |
assert mathml(Complement(U1, U2, evaluate=False)) == \ | |
'<apply><setdiff/><apply><union/><set><ci>a</ci></set><set>' \ | |
'<ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \ | |
'<set><ci>d</ci></set></apply></apply>' | |
assert mathml(Complement(I1, I2, evaluate=False)) == \ | |
'<apply><setdiff/><apply><intersect/><set><ci>a</ci></set><set>' \ | |
'<ci>b</ci></set></apply><apply><intersect/><set><ci>c</ci></set>' \ | |
'<set><ci>d</ci></set></apply></apply>' | |
assert mathml(Complement(P1, P2, evaluate=False)) == \ | |
'<apply><setdiff/><apply><cartesianproduct/><set><ci>a</ci></set>' \ | |
'<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \ | |
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' | |
assert mathml(ProductSet(A, P2)) == \ | |
'<apply><cartesianproduct/><set><ci>a</ci></set>' \ | |
'<apply><cartesianproduct/><set><ci>c</ci></set>' \ | |
'<set><ci>d</ci></set></apply></apply>' | |
assert mathml(ProductSet(U1, U2)) == \ | |
'<apply><cartesianproduct/><apply><union/><set><ci>a</ci></set>' \ | |
'<set><ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \ | |
'<set><ci>d</ci></set></apply></apply>' | |
assert mathml(ProductSet(I1, I2)) == \ | |
'<apply><cartesianproduct/><apply><intersect/><set><ci>a</ci></set>' \ | |
'<set><ci>b</ci></set></apply><apply><intersect/><set>' \ | |
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' | |
assert mathml(ProductSet(C1, C2)) == \ | |
'<apply><cartesianproduct/><apply><setdiff/><set><ci>a</ci></set>' \ | |
'<set><ci>b</ci></set></apply><apply><setdiff/><set>' \ | |
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' | |
def test_presentation_printmethod(): | |
assert mpp.doprint(1 + x) == '<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>' | |
assert mpp.doprint(x**2) == '<msup><mi>x</mi><mn>2</mn></msup>' | |
assert mpp.doprint(x**-1) == '<mfrac><mn>1</mn><mi>x</mi></mfrac>' | |
assert mpp.doprint(x**-2) == \ | |
'<mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac>' | |
assert mpp.doprint(2*x) == \ | |
'<mrow><mn>2</mn><mo>⁢</mo><mi>x</mi></mrow>' | |
def test_presentation_mathml_core(): | |
mml_1 = mpp._print(1 + x) | |
assert mml_1.nodeName == 'mrow' | |
nodes = mml_1.childNodes | |
assert len(nodes) == 3 | |
assert nodes[0].nodeName in ['mi', 'mn'] | |
assert nodes[1].nodeName == 'mo' | |
if nodes[0].nodeName == 'mn': | |
assert nodes[0].childNodes[0].nodeValue == '1' | |
assert nodes[2].childNodes[0].nodeValue == 'x' | |
else: | |
assert nodes[0].childNodes[0].nodeValue == 'x' | |
assert nodes[2].childNodes[0].nodeValue == '1' | |
mml_2 = mpp._print(x**2) | |
assert mml_2.nodeName == 'msup' | |
nodes = mml_2.childNodes | |
assert nodes[0].childNodes[0].nodeValue == 'x' | |
assert nodes[1].childNodes[0].nodeValue == '2' | |
mml_3 = mpp._print(2*x) | |
assert mml_3.nodeName == 'mrow' | |
nodes = mml_3.childNodes | |
assert nodes[0].childNodes[0].nodeValue == '2' | |
assert nodes[1].childNodes[0].nodeValue == '⁢' | |
assert nodes[2].childNodes[0].nodeValue == 'x' | |
mml = mpp._print(Float(1.0, 2)*x) | |
assert mml.nodeName == 'mrow' | |
nodes = mml.childNodes | |
assert nodes[0].childNodes[0].nodeValue == '1.0' | |
assert nodes[1].childNodes[0].nodeValue == '⁢' | |
assert nodes[2].childNodes[0].nodeValue == 'x' | |
def test_presentation_mathml_functions(): | |
mml_1 = mpp._print(sin(x)) | |
assert mml_1.childNodes[0].childNodes[0 | |
].nodeValue == 'sin' | |
assert mml_1.childNodes[1].childNodes[0 | |
].childNodes[0].nodeValue == 'x' | |
mml_2 = mpp._print(diff(sin(x), x, evaluate=False)) | |
assert mml_2.nodeName == 'mrow' | |
assert mml_2.childNodes[0].childNodes[0 | |
].childNodes[0].childNodes[0].nodeValue == 'ⅆ' | |
assert mml_2.childNodes[1].childNodes[1 | |
].nodeName == 'mfenced' | |
assert mml_2.childNodes[0].childNodes[1 | |
].childNodes[0].childNodes[0].nodeValue == 'ⅆ' | |
mml_3 = mpp._print(diff(cos(x*y), x, evaluate=False)) | |
assert mml_3.childNodes[0].nodeName == 'mfrac' | |
assert mml_3.childNodes[0].childNodes[0 | |
].childNodes[0].childNodes[0].nodeValue == '∂' | |
assert mml_3.childNodes[1].childNodes[0 | |
].childNodes[0].nodeValue == 'cos' | |
def test_print_derivative(): | |
f = Function('f') | |
d = Derivative(f(x, y, z), x, z, x, z, z, y) | |
assert mathml(d) == \ | |
'<apply><partialdiff/><bvar><ci>y</ci><ci>z</ci><degree><cn>2</cn></degree><ci>x</ci><ci>z</ci><ci>x</ci></bvar><apply><f/><ci>x</ci><ci>y</ci><ci>z</ci></apply></apply>' | |
assert mathml(d, printer='presentation') == \ | |
'<mrow><mfrac><mrow><msup><mo>∂</mo><mn>6</mn></msup></mrow><mrow><mo>∂</mo><mi>y</mi><msup><mo>∂</mo><mn>2</mn></msup><mi>z</mi><mo>∂</mo><mi>x</mi><mo>∂</mo><mi>z</mi><mo>∂</mo><mi>x</mi></mrow></mfrac><mrow><mi>f</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow></mrow>' | |
def test_presentation_mathml_limits(): | |
lim_fun = sin(x)/x | |
mml_1 = mpp._print(Limit(lim_fun, x, 0)) | |
assert mml_1.childNodes[0].nodeName == 'munder' | |
assert mml_1.childNodes[0].childNodes[0 | |
].childNodes[0].nodeValue == 'lim' | |
assert mml_1.childNodes[0].childNodes[1 | |
].childNodes[0].childNodes[0 | |
].nodeValue == 'x' | |
assert mml_1.childNodes[0].childNodes[1 | |
].childNodes[1].childNodes[0 | |
].nodeValue == '→' | |
assert mml_1.childNodes[0].childNodes[1 | |
].childNodes[2].childNodes[0 | |
].nodeValue == '0' | |
def test_presentation_mathml_integrals(): | |
assert mpp.doprint(Integral(x, (x, 0, 1))) == \ | |
'<mrow><msubsup><mo>∫</mo><mn>0</mn><mn>1</mn></msubsup>'\ | |
'<mi>x</mi><mo>ⅆ</mo><mi>x</mi></mrow>' | |
assert mpp.doprint(Integral(log(x), x)) == \ | |
'<mrow><mo>∫</mo><mrow><mi>log</mi><mfenced><mi>x</mi>'\ | |
'</mfenced></mrow><mo>ⅆ</mo><mi>x</mi></mrow>' | |
assert mpp.doprint(Integral(x*y, x, y)) == \ | |
'<mrow><mo>∬</mo><mrow><mi>x</mi><mo>⁢</mo>'\ | |
'<mi>y</mi></mrow><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>' | |
z, w = symbols('z w') | |
assert mpp.doprint(Integral(x*y*z, x, y, z)) == \ | |
'<mrow><mo>∭</mo><mrow><mi>x</mi><mo>⁢</mo>'\ | |
'<mi>y</mi><mo>⁢</mo><mi>z</mi></mrow><mo>ⅆ</mo>'\ | |
'<mi>z</mi><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>' | |
assert mpp.doprint(Integral(x*y*z*w, x, y, z, w)) == \ | |
'<mrow><mo>∫</mo><mo>∫</mo><mo>∫</mo>'\ | |
'<mo>∫</mo><mrow><mi>w</mi><mo>⁢</mo>'\ | |
'<mi>x</mi><mo>⁢</mo><mi>y</mi>'\ | |
'<mo>⁢</mo><mi>z</mi></mrow><mo>ⅆ</mo><mi>w</mi>'\ | |
'<mo>ⅆ</mo><mi>z</mi><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>' | |
assert mpp.doprint(Integral(x, x, y, (z, 0, 1))) == \ | |
'<mrow><msubsup><mo>∫</mo><mn>0</mn><mn>1</mn></msubsup>'\ | |
'<mo>∫</mo><mo>∫</mo><mi>x</mi><mo>ⅆ</mo><mi>z</mi>'\ | |
'<mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>' | |
assert mpp.doprint(Integral(x, (x, 0))) == \ | |
'<mrow><msup><mo>∫</mo><mn>0</mn></msup><mi>x</mi><mo>ⅆ</mo>'\ | |
'<mi>x</mi></mrow>' | |
def test_presentation_mathml_matrices(): | |
A = Matrix([1, 2, 3]) | |
B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]]) | |
mll_1 = mpp._print(A) | |
assert mll_1.childNodes[0].nodeName == 'mtable' | |
assert mll_1.childNodes[0].childNodes[0].nodeName == 'mtr' | |
assert len(mll_1.childNodes[0].childNodes) == 3 | |
assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd' | |
assert len(mll_1.childNodes[0].childNodes[0].childNodes) == 1 | |
assert mll_1.childNodes[0].childNodes[0].childNodes[0 | |
].childNodes[0].childNodes[0].nodeValue == '1' | |
assert mll_1.childNodes[0].childNodes[1].childNodes[0 | |
].childNodes[0].childNodes[0].nodeValue == '2' | |
assert mll_1.childNodes[0].childNodes[2].childNodes[0 | |
].childNodes[0].childNodes[0].nodeValue == '3' | |
mll_2 = mpp._print(B) | |
assert mll_2.childNodes[0].nodeName == 'mtable' | |
assert mll_2.childNodes[0].childNodes[0].nodeName == 'mtr' | |
assert len(mll_2.childNodes[0].childNodes) == 3 | |
assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd' | |
assert len(mll_2.childNodes[0].childNodes[0].childNodes) == 3 | |
assert mll_2.childNodes[0].childNodes[0].childNodes[0 | |
].childNodes[0].childNodes[0].nodeValue == '0' | |
assert mll_2.childNodes[0].childNodes[0].childNodes[1 | |
].childNodes[0].childNodes[0].nodeValue == '5' | |
assert mll_2.childNodes[0].childNodes[0].childNodes[2 | |
].childNodes[0].childNodes[0].nodeValue == '4' | |
assert mll_2.childNodes[0].childNodes[1].childNodes[0 | |
].childNodes[0].childNodes[0].nodeValue == '2' | |
assert mll_2.childNodes[0].childNodes[1].childNodes[1 | |
].childNodes[0].childNodes[0].nodeValue == '3' | |
assert mll_2.childNodes[0].childNodes[1].childNodes[2 | |
].childNodes[0].childNodes[0].nodeValue == '1' | |
assert mll_2.childNodes[0].childNodes[2].childNodes[0 | |
].childNodes[0].childNodes[0].nodeValue == '9' | |
assert mll_2.childNodes[0].childNodes[2].childNodes[1 | |
].childNodes[0].childNodes[0].nodeValue == '7' | |
assert mll_2.childNodes[0].childNodes[2].childNodes[2 | |
].childNodes[0].childNodes[0].nodeValue == '9' | |
def test_presentation_mathml_sums(): | |
summand = x | |
mml_1 = mpp._print(Sum(summand, (x, 1, 10))) | |
assert mml_1.childNodes[0].nodeName == 'munderover' | |
assert len(mml_1.childNodes[0].childNodes) == 3 | |
assert mml_1.childNodes[0].childNodes[0].childNodes[0 | |
].nodeValue == '∑' | |
assert len(mml_1.childNodes[0].childNodes[1].childNodes) == 3 | |
assert mml_1.childNodes[0].childNodes[2].childNodes[0 | |
].nodeValue == '10' | |
assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x' | |
def test_presentation_mathml_add(): | |
mml = mpp._print(x**5 - x**4 + x) | |
assert len(mml.childNodes) == 5 | |
assert mml.childNodes[0].childNodes[0].childNodes[0 | |
].nodeValue == 'x' | |
assert mml.childNodes[0].childNodes[1].childNodes[0 | |
].nodeValue == '5' | |
assert mml.childNodes[1].childNodes[0].nodeValue == '-' | |
assert mml.childNodes[2].childNodes[0].childNodes[0 | |
].nodeValue == 'x' | |
assert mml.childNodes[2].childNodes[1].childNodes[0 | |
].nodeValue == '4' | |
assert mml.childNodes[3].childNodes[0].nodeValue == '+' | |
assert mml.childNodes[4].childNodes[0].nodeValue == 'x' | |
def test_presentation_mathml_Rational(): | |
mml_1 = mpp._print(Rational(1, 1)) | |
assert mml_1.nodeName == 'mn' | |
mml_2 = mpp._print(Rational(2, 5)) | |
assert mml_2.nodeName == 'mfrac' | |
assert mml_2.childNodes[0].childNodes[0].nodeValue == '2' | |
assert mml_2.childNodes[1].childNodes[0].nodeValue == '5' | |
def test_presentation_mathml_constants(): | |
mml = mpp._print(I) | |
assert mml.childNodes[0].nodeValue == 'ⅈ' | |
mml = mpp._print(E) | |
assert mml.childNodes[0].nodeValue == 'ⅇ' | |
mml = mpp._print(oo) | |
assert mml.childNodes[0].nodeValue == '∞' | |
mml = mpp._print(pi) | |
assert mml.childNodes[0].nodeValue == 'π' | |
assert mathml(hbar, printer='presentation') == '<mi>ℏ</mi>' | |
assert mathml(S.TribonacciConstant, printer='presentation' | |
) == '<mi>TribonacciConstant</mi>' | |
assert mathml(S.EulerGamma, printer='presentation' | |
) == '<mi>γ</mi>' | |
assert mathml(S.GoldenRatio, printer='presentation' | |
) == '<mi>Φ</mi>' | |
assert mathml(zoo, printer='presentation') == \ | |
'<mover><mo>∞</mo><mo>~</mo></mover>' | |
assert mathml(S.NaN, printer='presentation') == '<mi>NaN</mi>' | |
def test_presentation_mathml_trig(): | |
mml = mpp._print(sin(x)) | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'sin' | |
mml = mpp._print(cos(x)) | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'cos' | |
mml = mpp._print(tan(x)) | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'tan' | |
mml = mpp._print(asin(x)) | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsin' | |
mml = mpp._print(acos(x)) | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'arccos' | |
mml = mpp._print(atan(x)) | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'arctan' | |
mml = mpp._print(sinh(x)) | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'sinh' | |
mml = mpp._print(cosh(x)) | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'cosh' | |
mml = mpp._print(tanh(x)) | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'tanh' | |
mml = mpp._print(asinh(x)) | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsinh' | |
mml = mpp._print(atanh(x)) | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'arctanh' | |
mml = mpp._print(acosh(x)) | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'arccosh' | |
def test_presentation_mathml_relational(): | |
mml_1 = mpp._print(Eq(x, 1)) | |
assert len(mml_1.childNodes) == 3 | |
assert mml_1.childNodes[0].nodeName == 'mi' | |
assert mml_1.childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml_1.childNodes[1].nodeName == 'mo' | |
assert mml_1.childNodes[1].childNodes[0].nodeValue == '=' | |
assert mml_1.childNodes[2].nodeName == 'mn' | |
assert mml_1.childNodes[2].childNodes[0].nodeValue == '1' | |
mml_2 = mpp._print(Ne(1, x)) | |
assert len(mml_2.childNodes) == 3 | |
assert mml_2.childNodes[0].nodeName == 'mn' | |
assert mml_2.childNodes[0].childNodes[0].nodeValue == '1' | |
assert mml_2.childNodes[1].nodeName == 'mo' | |
assert mml_2.childNodes[1].childNodes[0].nodeValue == '≠' | |
assert mml_2.childNodes[2].nodeName == 'mi' | |
assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x' | |
mml_3 = mpp._print(Ge(1, x)) | |
assert len(mml_3.childNodes) == 3 | |
assert mml_3.childNodes[0].nodeName == 'mn' | |
assert mml_3.childNodes[0].childNodes[0].nodeValue == '1' | |
assert mml_3.childNodes[1].nodeName == 'mo' | |
assert mml_3.childNodes[1].childNodes[0].nodeValue == '≥' | |
assert mml_3.childNodes[2].nodeName == 'mi' | |
assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x' | |
mml_4 = mpp._print(Lt(1, x)) | |
assert len(mml_4.childNodes) == 3 | |
assert mml_4.childNodes[0].nodeName == 'mn' | |
assert mml_4.childNodes[0].childNodes[0].nodeValue == '1' | |
assert mml_4.childNodes[1].nodeName == 'mo' | |
assert mml_4.childNodes[1].childNodes[0].nodeValue == '<' | |
assert mml_4.childNodes[2].nodeName == 'mi' | |
assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x' | |
def test_presentation_symbol(): | |
mml = mpp._print(x) | |
assert mml.nodeName == 'mi' | |
assert mml.childNodes[0].nodeValue == 'x' | |
del mml | |
mml = mpp._print(Symbol("x^2")) | |
assert mml.nodeName == 'msup' | |
assert mml.childNodes[0].nodeName == 'mi' | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[1].nodeName == 'mi' | |
assert mml.childNodes[1].childNodes[0].nodeValue == '2' | |
del mml | |
mml = mpp._print(Symbol("x__2")) | |
assert mml.nodeName == 'msup' | |
assert mml.childNodes[0].nodeName == 'mi' | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[1].nodeName == 'mi' | |
assert mml.childNodes[1].childNodes[0].nodeValue == '2' | |
del mml | |
mml = mpp._print(Symbol("x_2")) | |
assert mml.nodeName == 'msub' | |
assert mml.childNodes[0].nodeName == 'mi' | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[1].nodeName == 'mi' | |
assert mml.childNodes[1].childNodes[0].nodeValue == '2' | |
del mml | |
mml = mpp._print(Symbol("x^3_2")) | |
assert mml.nodeName == 'msubsup' | |
assert mml.childNodes[0].nodeName == 'mi' | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[1].nodeName == 'mi' | |
assert mml.childNodes[1].childNodes[0].nodeValue == '2' | |
assert mml.childNodes[2].nodeName == 'mi' | |
assert mml.childNodes[2].childNodes[0].nodeValue == '3' | |
del mml | |
mml = mpp._print(Symbol("x__3_2")) | |
assert mml.nodeName == 'msubsup' | |
assert mml.childNodes[0].nodeName == 'mi' | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[1].nodeName == 'mi' | |
assert mml.childNodes[1].childNodes[0].nodeValue == '2' | |
assert mml.childNodes[2].nodeName == 'mi' | |
assert mml.childNodes[2].childNodes[0].nodeValue == '3' | |
del mml | |
mml = mpp._print(Symbol("x_2_a")) | |
assert mml.nodeName == 'msub' | |
assert mml.childNodes[0].nodeName == 'mi' | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[1].nodeName == 'mrow' | |
assert mml.childNodes[1].childNodes[0].nodeName == 'mi' | |
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' | |
assert mml.childNodes[1].childNodes[1].nodeName == 'mo' | |
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' | |
assert mml.childNodes[1].childNodes[2].nodeName == 'mi' | |
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' | |
del mml | |
mml = mpp._print(Symbol("x^2^a")) | |
assert mml.nodeName == 'msup' | |
assert mml.childNodes[0].nodeName == 'mi' | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[1].nodeName == 'mrow' | |
assert mml.childNodes[1].childNodes[0].nodeName == 'mi' | |
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' | |
assert mml.childNodes[1].childNodes[1].nodeName == 'mo' | |
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' | |
assert mml.childNodes[1].childNodes[2].nodeName == 'mi' | |
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' | |
del mml | |
mml = mpp._print(Symbol("x__2__a")) | |
assert mml.nodeName == 'msup' | |
assert mml.childNodes[0].nodeName == 'mi' | |
assert mml.childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[1].nodeName == 'mrow' | |
assert mml.childNodes[1].childNodes[0].nodeName == 'mi' | |
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' | |
assert mml.childNodes[1].childNodes[1].nodeName == 'mo' | |
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' | |
assert mml.childNodes[1].childNodes[2].nodeName == 'mi' | |
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' | |
del mml | |
def test_presentation_mathml_greek(): | |
mml = mpp._print(Symbol('alpha')) | |
assert mml.nodeName == 'mi' | |
assert mml.childNodes[0].nodeValue == '\N{GREEK SMALL LETTER ALPHA}' | |
assert mpp.doprint(Symbol('alpha')) == '<mi>α</mi>' | |
assert mpp.doprint(Symbol('beta')) == '<mi>β</mi>' | |
assert mpp.doprint(Symbol('gamma')) == '<mi>γ</mi>' | |
assert mpp.doprint(Symbol('delta')) == '<mi>δ</mi>' | |
assert mpp.doprint(Symbol('epsilon')) == '<mi>ε</mi>' | |
assert mpp.doprint(Symbol('zeta')) == '<mi>ζ</mi>' | |
assert mpp.doprint(Symbol('eta')) == '<mi>η</mi>' | |
assert mpp.doprint(Symbol('theta')) == '<mi>θ</mi>' | |
assert mpp.doprint(Symbol('iota')) == '<mi>ι</mi>' | |
assert mpp.doprint(Symbol('kappa')) == '<mi>κ</mi>' | |
assert mpp.doprint(Symbol('lambda')) == '<mi>λ</mi>' | |
assert mpp.doprint(Symbol('mu')) == '<mi>μ</mi>' | |
assert mpp.doprint(Symbol('nu')) == '<mi>ν</mi>' | |
assert mpp.doprint(Symbol('xi')) == '<mi>ξ</mi>' | |
assert mpp.doprint(Symbol('omicron')) == '<mi>ο</mi>' | |
assert mpp.doprint(Symbol('pi')) == '<mi>π</mi>' | |
assert mpp.doprint(Symbol('rho')) == '<mi>ρ</mi>' | |
assert mpp.doprint(Symbol('varsigma')) == '<mi>ς</mi>' | |
assert mpp.doprint(Symbol('sigma')) == '<mi>σ</mi>' | |
assert mpp.doprint(Symbol('tau')) == '<mi>τ</mi>' | |
assert mpp.doprint(Symbol('upsilon')) == '<mi>υ</mi>' | |
assert mpp.doprint(Symbol('phi')) == '<mi>φ</mi>' | |
assert mpp.doprint(Symbol('chi')) == '<mi>χ</mi>' | |
assert mpp.doprint(Symbol('psi')) == '<mi>ψ</mi>' | |
assert mpp.doprint(Symbol('omega')) == '<mi>ω</mi>' | |
assert mpp.doprint(Symbol('Alpha')) == '<mi>Α</mi>' | |
assert mpp.doprint(Symbol('Beta')) == '<mi>Β</mi>' | |
assert mpp.doprint(Symbol('Gamma')) == '<mi>Γ</mi>' | |
assert mpp.doprint(Symbol('Delta')) == '<mi>Δ</mi>' | |
assert mpp.doprint(Symbol('Epsilon')) == '<mi>Ε</mi>' | |
assert mpp.doprint(Symbol('Zeta')) == '<mi>Ζ</mi>' | |
assert mpp.doprint(Symbol('Eta')) == '<mi>Η</mi>' | |
assert mpp.doprint(Symbol('Theta')) == '<mi>Θ</mi>' | |
assert mpp.doprint(Symbol('Iota')) == '<mi>Ι</mi>' | |
assert mpp.doprint(Symbol('Kappa')) == '<mi>Κ</mi>' | |
assert mpp.doprint(Symbol('Lambda')) == '<mi>Λ</mi>' | |
assert mpp.doprint(Symbol('Mu')) == '<mi>Μ</mi>' | |
assert mpp.doprint(Symbol('Nu')) == '<mi>Ν</mi>' | |
assert mpp.doprint(Symbol('Xi')) == '<mi>Ξ</mi>' | |
assert mpp.doprint(Symbol('Omicron')) == '<mi>Ο</mi>' | |
assert mpp.doprint(Symbol('Pi')) == '<mi>Π</mi>' | |
assert mpp.doprint(Symbol('Rho')) == '<mi>Ρ</mi>' | |
assert mpp.doprint(Symbol('Sigma')) == '<mi>Σ</mi>' | |
assert mpp.doprint(Symbol('Tau')) == '<mi>Τ</mi>' | |
assert mpp.doprint(Symbol('Upsilon')) == '<mi>Υ</mi>' | |
assert mpp.doprint(Symbol('Phi')) == '<mi>Φ</mi>' | |
assert mpp.doprint(Symbol('Chi')) == '<mi>Χ</mi>' | |
assert mpp.doprint(Symbol('Psi')) == '<mi>Ψ</mi>' | |
assert mpp.doprint(Symbol('Omega')) == '<mi>Ω</mi>' | |
def test_presentation_mathml_order(): | |
expr = x**3 + x**2*y + 3*x*y**3 + y**4 | |
mp = MathMLPresentationPrinter({'order': 'lex'}) | |
mml = mp._print(expr) | |
assert mml.childNodes[0].nodeName == 'msup' | |
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '3' | |
assert mml.childNodes[6].nodeName == 'msup' | |
assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'y' | |
assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '4' | |
mp = MathMLPresentationPrinter({'order': 'rev-lex'}) | |
mml = mp._print(expr) | |
assert mml.childNodes[0].nodeName == 'msup' | |
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'y' | |
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '4' | |
assert mml.childNodes[6].nodeName == 'msup' | |
assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'x' | |
assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '3' | |
def test_print_intervals(): | |
a = Symbol('a', real=True) | |
assert mpp.doprint(Interval(0, a)) == \ | |
'<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>' | |
assert mpp.doprint(Interval(0, a, False, False)) == \ | |
'<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>' | |
assert mpp.doprint(Interval(0, a, True, False)) == \ | |
'<mrow><mfenced close="]" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>' | |
assert mpp.doprint(Interval(0, a, False, True)) == \ | |
'<mrow><mfenced close=")" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>' | |
assert mpp.doprint(Interval(0, a, True, True)) == \ | |
'<mrow><mfenced close=")" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>' | |
def test_print_tuples(): | |
assert mpp.doprint(Tuple(0,)) == \ | |
'<mrow><mfenced><mn>0</mn></mfenced></mrow>' | |
assert mpp.doprint(Tuple(0, a)) == \ | |
'<mrow><mfenced><mn>0</mn><mi>a</mi></mfenced></mrow>' | |
assert mpp.doprint(Tuple(0, a, a)) == \ | |
'<mrow><mfenced><mn>0</mn><mi>a</mi><mi>a</mi></mfenced></mrow>' | |
assert mpp.doprint(Tuple(0, 1, 2, 3, 4)) == \ | |
'<mrow><mfenced><mn>0</mn><mn>1</mn><mn>2</mn><mn>3</mn><mn>4</mn></mfenced></mrow>' | |
assert mpp.doprint(Tuple(0, 1, Tuple(2, 3, 4))) == \ | |
'<mrow><mfenced><mn>0</mn><mn>1</mn><mrow><mfenced><mn>2</mn><mn>3'\ | |
'</mn><mn>4</mn></mfenced></mrow></mfenced></mrow>' | |
def test_print_re_im(): | |
assert mpp.doprint(re(x)) == \ | |
'<mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mpp.doprint(im(x)) == \ | |
'<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mpp.doprint(re(x + 1)) == \ | |
'<mrow><mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi>'\ | |
'</mfenced></mrow><mo>+</mo><mn>1</mn></mrow>' | |
assert mpp.doprint(im(x + 1)) == \ | |
'<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
def test_print_Abs(): | |
assert mpp.doprint(Abs(x)) == \ | |
'<mrow><mfenced close="|" open="|"><mi>x</mi></mfenced></mrow>' | |
assert mpp.doprint(Abs(x + 1)) == \ | |
'<mrow><mfenced close="|" open="|"><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow>' | |
def test_print_Determinant(): | |
assert mpp.doprint(Determinant(Matrix([[1, 2], [3, 4]]))) == \ | |
'<mrow><mfenced close="|" open="|"><mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></mfenced></mrow>' | |
def test_presentation_settings(): | |
raises(TypeError, lambda: mathml(x, printer='presentation', | |
method="garbage")) | |
def test_print_domains(): | |
from sympy.sets import Integers, Naturals, Naturals0, Reals, Complexes | |
assert mpp.doprint(Complexes) == '<mi mathvariant="normal">ℂ</mi>' | |
assert mpp.doprint(Integers) == '<mi mathvariant="normal">ℤ</mi>' | |
assert mpp.doprint(Naturals) == '<mi mathvariant="normal">ℕ</mi>' | |
assert mpp.doprint(Naturals0) == \ | |
'<msub><mi mathvariant="normal">ℕ</mi><mn>0</mn></msub>' | |
assert mpp.doprint(Reals) == '<mi mathvariant="normal">ℝ</mi>' | |
def test_print_expression_with_minus(): | |
assert mpp.doprint(-x) == '<mrow><mo>-</mo><mi>x</mi></mrow>' | |
assert mpp.doprint(-x/y) == \ | |
'<mrow><mo>-</mo><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow>' | |
assert mpp.doprint(-Rational(1, 2)) == \ | |
'<mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow>' | |
def test_print_AssocOp(): | |
from sympy.core.operations import AssocOp | |
class TestAssocOp(AssocOp): | |
identity = 0 | |
expr = TestAssocOp(1, 2) | |
assert mpp.doprint(expr) == \ | |
'<mrow><mi>testassocop</mi><mn>1</mn><mn>2</mn></mrow>' | |
def test_print_basic(): | |
expr = Basic(S(1), S(2)) | |
assert mpp.doprint(expr) == \ | |
'<mrow><mi>basic</mi><mfenced><mn>1</mn><mn>2</mn></mfenced></mrow>' | |
assert mp.doprint(expr) == '<basic><cn>1</cn><cn>2</cn></basic>' | |
def test_mat_delim_print(): | |
expr = Matrix([[1, 2], [3, 4]]) | |
assert mathml(expr, printer='presentation', mat_delim='[') == \ | |
'<mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd>'\ | |
'<mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn>'\ | |
'</mtd></mtr></mtable></mfenced>' | |
assert mathml(expr, printer='presentation', mat_delim='(') == \ | |
'<mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd>'\ | |
'</mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced>' | |
assert mathml(expr, printer='presentation', mat_delim='') == \ | |
'<mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr>'\ | |
'<mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable>' | |
def test_ln_notation_print(): | |
expr = log(x) | |
assert mathml(expr, printer='presentation') == \ | |
'<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mathml(expr, printer='presentation', ln_notation=False) == \ | |
'<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mathml(expr, printer='presentation', ln_notation=True) == \ | |
'<mrow><mi>ln</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
def test_mul_symbol_print(): | |
expr = x * y | |
assert mathml(expr, printer='presentation') == \ | |
'<mrow><mi>x</mi><mo>⁢</mo><mi>y</mi></mrow>' | |
assert mathml(expr, printer='presentation', mul_symbol=None) == \ | |
'<mrow><mi>x</mi><mo>⁢</mo><mi>y</mi></mrow>' | |
assert mathml(expr, printer='presentation', mul_symbol='dot') == \ | |
'<mrow><mi>x</mi><mo>·</mo><mi>y</mi></mrow>' | |
assert mathml(expr, printer='presentation', mul_symbol='ldot') == \ | |
'<mrow><mi>x</mi><mo>․</mo><mi>y</mi></mrow>' | |
assert mathml(expr, printer='presentation', mul_symbol='times') == \ | |
'<mrow><mi>x</mi><mo>×</mo><mi>y</mi></mrow>' | |
def test_print_lerchphi(): | |
assert mpp.doprint(lerchphi(1, 2, 3)) == \ | |
'<mrow><mi>Φ</mi><mfenced><mn>1</mn><mn>2</mn><mn>3</mn></mfenced></mrow>' | |
def test_print_polylog(): | |
assert mp.doprint(polylog(x, y)) == \ | |
'<apply><polylog/><ci>x</ci><ci>y</ci></apply>' | |
assert mpp.doprint(polylog(x, y)) == \ | |
'<mrow><msub><mi>Li</mi><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>' | |
def test_print_set_frozenset(): | |
f = frozenset({1, 5, 3}) | |
assert mpp.doprint(f) == \ | |
'<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mn>5</mn></mfenced>' | |
s = set({1, 2, 3}) | |
assert mpp.doprint(s) == \ | |
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>' | |
def test_print_FiniteSet(): | |
f1 = FiniteSet(x, 1, 3) | |
assert mpp.doprint(f1) == \ | |
'<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi></mfenced>' | |
def test_print_LambertW(): | |
assert mpp.doprint(LambertW(x)) == '<mrow><mi>W</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mpp.doprint(LambertW(x, y)) == '<mrow><mi>W</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' | |
def test_print_EmptySet(): | |
assert mpp.doprint(S.EmptySet) == '<mo>∅</mo>' | |
def test_print_UniversalSet(): | |
assert mpp.doprint(S.UniversalSet) == '<mo>𝕌</mo>' | |
def test_print_spaces(): | |
assert mpp.doprint(HilbertSpace()) == '<mi>ℋ</mi>' | |
assert mpp.doprint(ComplexSpace(2)) == '<msup>𝒞<mn>2</mn></msup>' | |
assert mpp.doprint(FockSpace()) == '<mi>ℱ</mi>' | |
def test_print_constants(): | |
assert mpp.doprint(hbar) == '<mi>ℏ</mi>' | |
assert mpp.doprint(S.TribonacciConstant) == '<mi>TribonacciConstant</mi>' | |
assert mpp.doprint(S.GoldenRatio) == '<mi>Φ</mi>' | |
assert mpp.doprint(S.EulerGamma) == '<mi>γ</mi>' | |
def test_print_Contains(): | |
assert mpp.doprint(Contains(x, S.Naturals)) == \ | |
'<mrow><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℕ</mi></mrow>' | |
def test_print_Dagger(): | |
assert mpp.doprint(Dagger(x)) == '<msup><mi>x</mi>†</msup>' | |
def test_print_SetOp(): | |
f1 = FiniteSet(x, 1, 3) | |
f2 = FiniteSet(y, 2, 4) | |
prntr = lambda x: mathml(x, printer='presentation') | |
assert prntr(Union(f1, f2, evaluate=False)) == \ | |
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ | |
'</mfenced><mo>∪</mo><mfenced close="}" open="{"><mn>2</mn>'\ | |
'<mn>4</mn><mi>y</mi></mfenced></mrow>' | |
assert prntr(Intersection(f1, f2, evaluate=False)) == \ | |
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ | |
'</mfenced><mo>∩</mo><mfenced close="}" open="{"><mn>2</mn>'\ | |
'<mn>4</mn><mi>y</mi></mfenced></mrow>' | |
assert prntr(Complement(f1, f2, evaluate=False)) == \ | |
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ | |
'</mfenced><mo>∖</mo><mfenced close="}" open="{"><mn>2</mn>'\ | |
'<mn>4</mn><mi>y</mi></mfenced></mrow>' | |
assert prntr(SymmetricDifference(f1, f2, evaluate=False)) == \ | |
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ | |
'</mfenced><mo>∆</mo><mfenced close="}" open="{"><mn>2</mn>'\ | |
'<mn>4</mn><mi>y</mi></mfenced></mrow>' | |
A = FiniteSet(a) | |
C = FiniteSet(c) | |
D = FiniteSet(d) | |
U1 = Union(C, D, evaluate=False) | |
I1 = Intersection(C, D, evaluate=False) | |
C1 = Complement(C, D, evaluate=False) | |
D1 = SymmetricDifference(C, D, evaluate=False) | |
# XXX ProductSet does not support evaluate keyword | |
P1 = ProductSet(C, D) | |
assert prntr(Union(A, I1, evaluate=False)) == \ | |
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ | |
'<mo>∪</mo><mfenced><mrow><mfenced close="}" open="{">' \ | |
'<mi>c</mi></mfenced><mo>∩</mo><mfenced close="}" open="{">' \ | |
'<mi>d</mi></mfenced></mrow></mfenced></mrow>' | |
assert prntr(Intersection(A, C1, evaluate=False)) == \ | |
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ | |
'<mo>∩</mo><mfenced><mrow><mfenced close="}" open="{">' \ | |
'<mi>c</mi></mfenced><mo>∖</mo><mfenced close="}" open="{">' \ | |
'<mi>d</mi></mfenced></mrow></mfenced></mrow>' | |
assert prntr(Complement(A, D1, evaluate=False)) == \ | |
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ | |
'<mo>∖</mo><mfenced><mrow><mfenced close="}" open="{">' \ | |
'<mi>c</mi></mfenced><mo>∆</mo><mfenced close="}" open="{">' \ | |
'<mi>d</mi></mfenced></mrow></mfenced></mrow>' | |
assert prntr(SymmetricDifference(A, P1, evaluate=False)) == \ | |
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ | |
'<mo>∆</mo><mfenced><mrow><mfenced close="}" open="{">' \ | |
'<mi>c</mi></mfenced><mo>×</mo><mfenced close="}" open="{">' \ | |
'<mi>d</mi></mfenced></mrow></mfenced></mrow>' | |
assert prntr(ProductSet(A, U1)) == \ | |
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ | |
'<mo>×</mo><mfenced><mrow><mfenced close="}" open="{">' \ | |
'<mi>c</mi></mfenced><mo>∪</mo><mfenced close="}" open="{">' \ | |
'<mi>d</mi></mfenced></mrow></mfenced></mrow>' | |
def test_print_logic(): | |
assert mpp.doprint(And(x, y)) == \ | |
'<mrow><mi>x</mi><mo>∧</mo><mi>y</mi></mrow>' | |
assert mpp.doprint(Or(x, y)) == \ | |
'<mrow><mi>x</mi><mo>∨</mo><mi>y</mi></mrow>' | |
assert mpp.doprint(Xor(x, y)) == \ | |
'<mrow><mi>x</mi><mo>⊻</mo><mi>y</mi></mrow>' | |
assert mpp.doprint(Implies(x, y)) == \ | |
'<mrow><mi>x</mi><mo>⇒</mo><mi>y</mi></mrow>' | |
assert mpp.doprint(Equivalent(x, y)) == \ | |
'<mrow><mi>x</mi><mo>⇔</mo><mi>y</mi></mrow>' | |
assert mpp.doprint(And(Eq(x, y), x > 4)) == \ | |
'<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>∧</mo>'\ | |
'<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>' | |
assert mpp.doprint(And(Eq(x, 3), y < 3, x > y + 1)) == \ | |
'<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>∧</mo>'\ | |
'<mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo><mn>1</mn></mrow>'\ | |
'</mrow><mo>∧</mo><mrow><mi>y</mi><mo><</mo><mn>3</mn></mrow></mrow>' | |
assert mpp.doprint(Or(Eq(x, y), x > 4)) == \ | |
'<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>∨</mo>'\ | |
'<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>' | |
assert mpp.doprint(And(Eq(x, 3), Or(y < 3, x > y + 1))) == \ | |
'<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>∧</mo>'\ | |
'<mfenced><mrow><mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo>'\ | |
'<mn>1</mn></mrow></mrow><mo>∨</mo><mrow><mi>y</mi><mo><</mo>'\ | |
'<mn>3</mn></mrow></mrow></mfenced></mrow>' | |
assert mpp.doprint(Not(x)) == '<mrow><mo>¬</mo><mi>x</mi></mrow>' | |
assert mpp.doprint(Not(And(x, y))) == \ | |
'<mrow><mo>¬</mo><mfenced><mrow><mi>x</mi><mo>∧</mo>'\ | |
'<mi>y</mi></mrow></mfenced></mrow>' | |
def test_root_notation_print(): | |
assert mathml(x**(S.One/3), printer='presentation') == \ | |
'<mroot><mi>x</mi><mn>3</mn></mroot>' | |
assert mathml(x**(S.One/3), printer='presentation', root_notation=False) ==\ | |
'<msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup>' | |
assert mathml(x**(S.One/3), printer='content') == \ | |
'<apply><root/><degree><cn>3</cn></degree><ci>x</ci></apply>' | |
assert mathml(x**(S.One/3), printer='content', root_notation=False) == \ | |
'<apply><power/><ci>x</ci><apply><divide/><cn>1</cn><cn>3</cn></apply></apply>' | |
assert mathml(x**(Rational(-1, 3)), printer='presentation') == \ | |
'<mfrac><mn>1</mn><mroot><mi>x</mi><mn>3</mn></mroot></mfrac>' | |
assert mathml(x**(Rational(-1, 3)), printer='presentation', root_notation=False) \ | |
== '<mfrac><mn>1</mn><msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></mfrac>' | |
def test_fold_frac_powers_print(): | |
expr = x ** Rational(5, 2) | |
assert mathml(expr, printer='presentation') == \ | |
'<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>' | |
assert mathml(expr, printer='presentation', fold_frac_powers=True) == \ | |
'<msup><mi>x</mi><mfrac bevelled="true"><mn>5</mn><mn>2</mn></mfrac></msup>' | |
assert mathml(expr, printer='presentation', fold_frac_powers=False) == \ | |
'<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>' | |
def test_fold_short_frac_print(): | |
expr = Rational(2, 5) | |
assert mathml(expr, printer='presentation') == \ | |
'<mfrac><mn>2</mn><mn>5</mn></mfrac>' | |
assert mathml(expr, printer='presentation', fold_short_frac=True) == \ | |
'<mfrac bevelled="true"><mn>2</mn><mn>5</mn></mfrac>' | |
assert mathml(expr, printer='presentation', fold_short_frac=False) == \ | |
'<mfrac><mn>2</mn><mn>5</mn></mfrac>' | |
def test_print_factorials(): | |
assert mpp.doprint(factorial(x)) == '<mrow><mi>x</mi><mo>!</mo></mrow>' | |
assert mpp.doprint(factorial(x + 1)) == \ | |
'<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow>' | |
assert mpp.doprint(factorial2(x)) == '<mrow><mi>x</mi><mo>!!</mo></mrow>' | |
assert mpp.doprint(factorial2(x + 1)) == \ | |
'<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!!</mo></mrow>' | |
assert mpp.doprint(binomial(x, y)) == \ | |
'<mfenced><mfrac linethickness="0"><mi>x</mi><mi>y</mi></mfrac></mfenced>' | |
assert mpp.doprint(binomial(4, x + y)) == \ | |
'<mfenced><mfrac linethickness="0"><mn>4</mn><mrow><mi>x</mi>'\ | |
'<mo>+</mo><mi>y</mi></mrow></mfrac></mfenced>' | |
def test_print_floor(): | |
expr = floor(x) | |
assert mathml(expr, printer='presentation') == \ | |
'<mrow><mfenced close="⌋" open="⌊"><mi>x</mi></mfenced></mrow>' | |
def test_print_ceiling(): | |
expr = ceiling(x) | |
assert mathml(expr, printer='presentation') == \ | |
'<mrow><mfenced close="⌉" open="⌈"><mi>x</mi></mfenced></mrow>' | |
def test_print_Lambda(): | |
expr = Lambda(x, x+1) | |
assert mathml(expr, printer='presentation') == \ | |
'<mfenced><mrow><mi>x</mi><mo>↦</mo><mrow><mi>x</mi><mo>+</mo>'\ | |
'<mn>1</mn></mrow></mrow></mfenced>' | |
expr = Lambda((x, y), x + y) | |
assert mathml(expr, printer='presentation') == \ | |
'<mfenced><mrow><mrow><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'\ | |
'<mo>↦</mo><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mrow></mfenced>' | |
def test_print_conjugate(): | |
assert mpp.doprint(conjugate(x)) == \ | |
'<menclose notation="top"><mi>x</mi></menclose>' | |
assert mpp.doprint(conjugate(x + 1)) == \ | |
'<mrow><menclose notation="top"><mi>x</mi></menclose><mo>+</mo><mn>1</mn></mrow>' | |
def test_print_AccumBounds(): | |
a = Symbol('a', real=True) | |
assert mpp.doprint(AccumBounds(0, 1)) == '<mfenced close="⟩" open="⟨"><mn>0</mn><mn>1</mn></mfenced>' | |
assert mpp.doprint(AccumBounds(0, a)) == '<mfenced close="⟩" open="⟨"><mn>0</mn><mi>a</mi></mfenced>' | |
assert mpp.doprint(AccumBounds(a + 1, a + 2)) == '<mfenced close="⟩" open="⟨"><mrow><mi>a</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfenced>' | |
def test_print_Float(): | |
assert mpp.doprint(Float(1e100)) == '<mrow><mn>1.0</mn><mo>·</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>' | |
assert mpp.doprint(Float(1e-100)) == '<mrow><mn>1.0</mn><mo>·</mo><msup><mn>10</mn><mn>-100</mn></msup></mrow>' | |
assert mpp.doprint(Float(-1e100)) == '<mrow><mn>-1.0</mn><mo>·</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>' | |
assert mpp.doprint(Float(1.0*oo)) == '<mi>∞</mi>' | |
assert mpp.doprint(Float(-1.0*oo)) == '<mrow><mo>-</mo><mi>∞</mi></mrow>' | |
def test_print_different_functions(): | |
assert mpp.doprint(gamma(x)) == '<mrow><mi>Γ</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mpp.doprint(lowergamma(x, y)) == '<mrow><mi>γ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' | |
assert mpp.doprint(uppergamma(x, y)) == '<mrow><mi>Γ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' | |
assert mpp.doprint(zeta(x)) == '<mrow><mi>ζ</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mpp.doprint(zeta(x, y)) == '<mrow><mi>ζ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' | |
assert mpp.doprint(dirichlet_eta(x)) == '<mrow><mi>η</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mpp.doprint(elliptic_k(x)) == '<mrow><mi>Κ</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mpp.doprint(totient(x)) == '<mrow><mi>ϕ</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mpp.doprint(reduced_totient(x)) == '<mrow><mi>λ</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mpp.doprint(primenu(x)) == '<mrow><mi>ν</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mpp.doprint(primeomega(x)) == '<mrow><mi>Ω</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mpp.doprint(fresnels(x)) == '<mrow><mi>S</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mpp.doprint(fresnelc(x)) == '<mrow><mi>C</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mpp.doprint(Heaviside(x)) == '<mrow><mi>Θ</mi><mfenced><mi>x</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced></mrow>' | |
def test_mathml_builtins(): | |
assert mpp.doprint(None) == '<mi>None</mi>' | |
assert mpp.doprint(true) == '<mi>True</mi>' | |
assert mpp.doprint(false) == '<mi>False</mi>' | |
def test_mathml_Range(): | |
assert mpp.doprint(Range(1, 51)) == \ | |
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mi>…</mi><mn>50</mn></mfenced>' | |
assert mpp.doprint(Range(1, 4)) == \ | |
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>' | |
assert mpp.doprint(Range(0, 3, 1)) == \ | |
'<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mn>2</mn></mfenced>' | |
assert mpp.doprint(Range(0, 30, 1)) == \ | |
'<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mi>…</mi><mn>29</mn></mfenced>' | |
assert mpp.doprint(Range(30, 1, -1)) == \ | |
'<mfenced close="}" open="{"><mn>30</mn><mn>29</mn><mi>…</mi>'\ | |
'<mn>2</mn></mfenced>' | |
assert mpp.doprint(Range(0, oo, 2)) == \ | |
'<mfenced close="}" open="{"><mn>0</mn><mn>2</mn><mi>…</mi></mfenced>' | |
assert mpp.doprint(Range(oo, -2, -2)) == \ | |
'<mfenced close="}" open="{"><mi>…</mi><mn>2</mn><mn>0</mn></mfenced>' | |
assert mpp.doprint(Range(-2, -oo, -1)) == \ | |
'<mfenced close="}" open="{"><mn>-2</mn><mn>-3</mn><mi>…</mi></mfenced>' | |
def test_print_exp(): | |
assert mpp.doprint(exp(x)) == \ | |
'<msup><mi>ⅇ</mi><mi>x</mi></msup>' | |
assert mpp.doprint(exp(1) + exp(2)) == \ | |
'<mrow><mi>ⅇ</mi><mo>+</mo><msup><mi>ⅇ</mi><mn>2</mn></msup></mrow>' | |
def test_print_MinMax(): | |
assert mpp.doprint(Min(x, y)) == \ | |
'<mrow><mo>min</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' | |
assert mpp.doprint(Min(x, 2, x**3)) == \ | |
'<mrow><mo>min</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\ | |
'<mn>3</mn></msup></mfenced></mrow>' | |
assert mpp.doprint(Max(x, y)) == \ | |
'<mrow><mo>max</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' | |
assert mpp.doprint(Max(x, 2, x**3)) == \ | |
'<mrow><mo>max</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\ | |
'<mn>3</mn></msup></mfenced></mrow>' | |
def test_mathml_presentation_numbers(): | |
n = Symbol('n') | |
assert mathml(catalan(n), printer='presentation') == \ | |
'<msub><mi>C</mi><mi>n</mi></msub>' | |
assert mathml(bernoulli(n), printer='presentation') == \ | |
'<msub><mi>B</mi><mi>n</mi></msub>' | |
assert mathml(bell(n), printer='presentation') == \ | |
'<msub><mi>B</mi><mi>n</mi></msub>' | |
assert mathml(euler(n), printer='presentation') == \ | |
'<msub><mi>E</mi><mi>n</mi></msub>' | |
assert mathml(fibonacci(n), printer='presentation') == \ | |
'<msub><mi>F</mi><mi>n</mi></msub>' | |
assert mathml(lucas(n), printer='presentation') == \ | |
'<msub><mi>L</mi><mi>n</mi></msub>' | |
assert mathml(tribonacci(n), printer='presentation') == \ | |
'<msub><mi>T</mi><mi>n</mi></msub>' | |
assert mathml(bernoulli(n, x), printer='presentation') == \ | |
'<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mathml(bell(n, x), printer='presentation') == \ | |
'<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mathml(euler(n, x), printer='presentation') == \ | |
'<mrow><msub><mi>E</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mathml(fibonacci(n, x), printer='presentation') == \ | |
'<mrow><msub><mi>F</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mathml(tribonacci(n, x), printer='presentation') == \ | |
'<mrow><msub><mi>T</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' | |
def test_mathml_presentation_mathieu(): | |
assert mathml(mathieuc(x, y, z), printer='presentation') == \ | |
'<mrow><mi>C</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' | |
assert mathml(mathieus(x, y, z), printer='presentation') == \ | |
'<mrow><mi>S</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' | |
assert mathml(mathieucprime(x, y, z), printer='presentation') == \ | |
'<mrow><mi>C′</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' | |
assert mathml(mathieusprime(x, y, z), printer='presentation') == \ | |
'<mrow><mi>S′</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' | |
def test_mathml_presentation_stieltjes(): | |
assert mathml(stieltjes(n), printer='presentation') == \ | |
'<msub><mi>γ</mi><mi>n</mi></msub>' | |
assert mathml(stieltjes(n, x), printer='presentation') == \ | |
'<mrow><msub><mi>γ</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' | |
def test_print_matrix_symbol(): | |
A = MatrixSymbol('A', 1, 2) | |
assert mpp.doprint(A) == '<mi>A</mi>' | |
assert mp.doprint(A) == '<ci>A</ci>' | |
assert mathml(A, printer='presentation', mat_symbol_style="bold") == \ | |
'<mi mathvariant="bold">A</mi>' | |
# No effect in content printer | |
assert mathml(A, mat_symbol_style="bold") == '<ci>A</ci>' | |
def test_print_hadamard(): | |
from sympy.matrices.expressions import HadamardProduct | |
from sympy.matrices.expressions import Transpose | |
X = MatrixSymbol('X', 2, 2) | |
Y = MatrixSymbol('Y', 2, 2) | |
assert mathml(HadamardProduct(X, Y*Y), printer="presentation") == \ | |
'<mrow>' \ | |
'<mi>X</mi>' \ | |
'<mo>∘</mo>' \ | |
'<msup><mi>Y</mi><mn>2</mn></msup>' \ | |
'</mrow>' | |
assert mathml(HadamardProduct(X, Y)*Y, printer="presentation") == \ | |
'<mrow>' \ | |
'<mfenced>' \ | |
'<mrow><mi>X</mi><mo>∘</mo><mi>Y</mi></mrow>' \ | |
'</mfenced>' \ | |
'<mo>⁢</mo><mi>Y</mi>' \ | |
'</mrow>' | |
assert mathml(HadamardProduct(X, Y, Y), printer="presentation") == \ | |
'<mrow>' \ | |
'<mi>X</mi><mo>∘</mo>' \ | |
'<mi>Y</mi><mo>∘</mo>' \ | |
'<mi>Y</mi>' \ | |
'</mrow>' | |
assert mathml( | |
Transpose(HadamardProduct(X, Y)), printer="presentation") == \ | |
'<msup>' \ | |
'<mfenced>' \ | |
'<mrow><mi>X</mi><mo>∘</mo><mi>Y</mi></mrow>' \ | |
'</mfenced>' \ | |
'<mo>T</mo>' \ | |
'</msup>' | |
def test_print_random_symbol(): | |
R = RandomSymbol(Symbol('R')) | |
assert mpp.doprint(R) == '<mi>R</mi>' | |
assert mp.doprint(R) == '<ci>R</ci>' | |
def test_print_IndexedBase(): | |
assert mathml(IndexedBase(a)[b], printer='presentation') == \ | |
'<msub><mi>a</mi><mi>b</mi></msub>' | |
assert mathml(IndexedBase(a)[b, c, d], printer='presentation') == \ | |
'<msub><mi>a</mi><mfenced><mi>b</mi><mi>c</mi><mi>d</mi></mfenced></msub>' | |
assert mathml(IndexedBase(a)[b]*IndexedBase(c)[d]*IndexedBase(e), | |
printer='presentation') == \ | |
'<mrow><msub><mi>a</mi><mi>b</mi></msub><mo>⁢'\ | |
'</mo><msub><mi>c</mi><mi>d</mi></msub><mo>⁢</mo><mi>e</mi></mrow>' | |
def test_print_Indexed(): | |
assert mathml(IndexedBase(a), printer='presentation') == '<mi>a</mi>' | |
assert mathml(IndexedBase(a/b), printer='presentation') == \ | |
'<mrow><mfrac><mi>a</mi><mi>b</mi></mfrac></mrow>' | |
assert mathml(IndexedBase((a, b)), printer='presentation') == \ | |
'<mrow><mfenced><mi>a</mi><mi>b</mi></mfenced></mrow>' | |
def test_print_MatrixElement(): | |
i, j = symbols('i j') | |
A = MatrixSymbol('A', i, j) | |
assert mathml(A[0,0],printer = 'presentation') == \ | |
'<msub><mi>A</mi><mfenced close="" open=""><mn>0</mn><mn>0</mn></mfenced></msub>' | |
assert mathml(A[i,j], printer = 'presentation') == \ | |
'<msub><mi>A</mi><mfenced close="" open=""><mi>i</mi><mi>j</mi></mfenced></msub>' | |
assert mathml(A[i*j,0], printer = 'presentation') == \ | |
'<msub><mi>A</mi><mfenced close="" open=""><mrow><mi>i</mi><mo>⁢</mo><mi>j</mi></mrow><mn>0</mn></mfenced></msub>' | |
def test_print_Vector(): | |
ACS = CoordSys3D('A') | |
assert mathml(Cross(ACS.i, ACS.j*ACS.x*3 + ACS.k), printer='presentation') == \ | |
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><mfenced><mrow>'\ | |
'<mfenced><mrow><mn>3</mn><mo>⁢</mo><msub>'\ | |
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ | |
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\ | |
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\ | |
'<mi mathvariant="bold">k</mi><mo>^</mo></mover><mi mathvariant="bold">'\ | |
'A</mi></msub></mrow></mfenced></mrow>' | |
assert mathml(Cross(ACS.i, ACS.j), printer='presentation') == \ | |
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub><mover>'\ | |
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow>' | |
assert mathml(x*Cross(ACS.i, ACS.j), printer='presentation') == \ | |
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><msub><mover>'\ | |
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub><mover>'\ | |
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' | |
assert mathml(Cross(x*ACS.i, ACS.j), printer='presentation') == \ | |
'<mrow><mo>-</mo><mrow><msub><mover><mi mathvariant="bold">j</mi>'\ | |
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub>'\ | |
'<mo>×</mo><mfenced><mrow><mfenced><mi>x</mi></mfenced>'\ | |
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">i</mi>'\ | |
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\ | |
'</mfenced></mrow></mrow>' | |
assert mathml(Curl(3*ACS.x*ACS.j), printer='presentation') == \ | |
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><mfenced><mrow>'\ | |
'<mn>3</mn><mo>⁢</mo><msub>'\ | |
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ | |
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\ | |
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' | |
assert mathml(Curl(3*x*ACS.x*ACS.j), printer='presentation') == \ | |
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><mfenced><mrow>'\ | |
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\ | |
'</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\ | |
'<mi>x</mi></mrow></mfenced><mo>⁢</mo><msub><mover>'\ | |
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' | |
assert mathml(x*Curl(3*ACS.x*ACS.j), printer='presentation') == \ | |
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\ | |
'<mo>×</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\ | |
'<mo>⁢</mo><msub><mi mathvariant="bold">x</mi>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\ | |
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\ | |
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\ | |
'</mfenced></mrow></mfenced></mrow>' | |
assert mathml(Curl(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \ | |
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><msub><mover>'\ | |
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\ | |
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\ | |
'</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\ | |
'<mi>x</mi></mrow></mfenced><mo>⁢</mo><msub><mover>'\ | |
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' | |
assert mathml(Divergence(3*ACS.x*ACS.j), printer='presentation') == \ | |
'<mrow><mo>∇</mo><mo>·</mo><mfenced><mrow><mfenced><mrow>'\ | |
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\ | |
'</mi><mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\ | |
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\ | |
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' | |
assert mathml(x*Divergence(3*ACS.x*ACS.j), printer='presentation') == \ | |
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\ | |
'<mo>·</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\ | |
'<mo>⁢</mo><msub><mi mathvariant="bold">x</mi>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\ | |
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\ | |
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\ | |
'</mfenced></mrow></mfenced></mrow>' | |
assert mathml(Divergence(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \ | |
'<mrow><mo>∇</mo><mo>·</mo><mfenced><mrow><msub><mover>'\ | |
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\ | |
'<mn>3</mn><mo>⁢</mo><msub>'\ | |
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ | |
'<mo>⁢</mo><mi>x</mi></mrow></mfenced>'\ | |
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\ | |
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' | |
assert mathml(Dot(ACS.i, ACS.j*ACS.x*3+ACS.k), printer='presentation') == \ | |
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><mfenced><mrow>'\ | |
'<mfenced><mrow><mn>3</mn><mo>⁢</mo><msub>'\ | |
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ | |
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\ | |
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\ | |
'<mi mathvariant="bold">k</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' | |
assert mathml(Dot(ACS.i, ACS.j), printer='presentation') == \ | |
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><msub><mover>'\ | |
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow>' | |
assert mathml(Dot(x*ACS.i, ACS.j), printer='presentation') == \ | |
'<mrow><msub><mover><mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><mfenced><mrow>'\ | |
'<mfenced><mi>x</mi></mfenced><mo>⁢</mo><msub><mover>'\ | |
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' | |
assert mathml(x*Dot(ACS.i, ACS.j), printer='presentation') == \ | |
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><msub><mover>'\ | |
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><msub><mover>'\ | |
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' | |
assert mathml(Gradient(ACS.x), printer='presentation') == \ | |
'<mrow><mo>∇</mo><msub><mi mathvariant="bold">x</mi>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow>' | |
assert mathml(Gradient(ACS.x + 3*ACS.y), printer='presentation') == \ | |
'<mrow><mo>∇</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ | |
'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\ | |
'<mo>⁢</mo><msub><mi mathvariant="bold">y</mi>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>' | |
assert mathml(x*Gradient(ACS.x), printer='presentation') == \ | |
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\ | |
'<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\ | |
'</msub></mrow></mfenced></mrow>' | |
assert mathml(Gradient(x*ACS.x), printer='presentation') == \ | |
'<mrow><mo>∇</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ | |
'x</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\ | |
'<mi>x</mi></mrow></mfenced></mrow>' | |
assert mathml(Cross(ACS.x, ACS.z) + Cross(ACS.z, ACS.x), printer='presentation') == \ | |
'<mover><mi mathvariant="bold">0</mi><mo>^</mo></mover>' | |
assert mathml(Cross(ACS.z, ACS.x), printer='presentation') == \ | |
'<mrow><mo>-</mo><mrow><msub><mi mathvariant="bold">x</mi>'\ | |
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub>'\ | |
'<mi mathvariant="bold">z</mi><mi mathvariant="bold">A</mi></msub></mrow></mrow>' | |
assert mathml(Laplacian(ACS.x), printer='presentation') == \ | |
'<mrow><mo>∆</mo><msub><mi mathvariant="bold">x</mi>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow>' | |
assert mathml(Laplacian(ACS.x + 3*ACS.y), printer='presentation') == \ | |
'<mrow><mo>∆</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ | |
'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\ | |
'<mo>⁢</mo><msub><mi mathvariant="bold">y</mi>'\ | |
'<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>' | |
assert mathml(x*Laplacian(ACS.x), printer='presentation') == \ | |
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∆</mo>'\ | |
'<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\ | |
'</msub></mrow></mfenced></mrow>' | |
assert mathml(Laplacian(x*ACS.x), printer='presentation') == \ | |
'<mrow><mo>∆</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ | |
'x</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\ | |
'<mi>x</mi></mrow></mfenced></mrow>' | |
def test_print_elliptic_f(): | |
assert mathml(elliptic_f(x, y), printer = 'presentation') == \ | |
'<mrow><mi>𝖥</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>' | |
assert mathml(elliptic_f(x/y, y), printer = 'presentation') == \ | |
'<mrow><mi>𝖥</mi><mfenced separators="|"><mrow><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow><mi>y</mi></mfenced></mrow>' | |
def test_print_elliptic_e(): | |
assert mathml(elliptic_e(x), printer = 'presentation') == \ | |
'<mrow><mi>𝖤</mi><mfenced separators="|"><mi>x</mi></mfenced></mrow>' | |
assert mathml(elliptic_e(x, y), printer = 'presentation') == \ | |
'<mrow><mi>𝖤</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>' | |
def test_print_elliptic_pi(): | |
assert mathml(elliptic_pi(x, y), printer = 'presentation') == \ | |
'<mrow><mi>𝛱</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>' | |
assert mathml(elliptic_pi(x, y, z), printer = 'presentation') == \ | |
'<mrow><mi>𝛱</mi><mfenced separators=";|"><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' | |
def test_print_Ei(): | |
assert mathml(Ei(x), printer = 'presentation') == \ | |
'<mrow><mi>Ei</mi><mfenced><mi>x</mi></mfenced></mrow>' | |
assert mathml(Ei(x**y), printer = 'presentation') == \ | |
'<mrow><mi>Ei</mi><mfenced><msup><mi>x</mi><mi>y</mi></msup></mfenced></mrow>' | |
def test_print_expint(): | |
assert mathml(expint(x, y), printer = 'presentation') == \ | |
'<mrow><msub><mo>E</mo><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>' | |
assert mathml(expint(IndexedBase(x)[1], IndexedBase(x)[2]), printer = 'presentation') == \ | |
'<mrow><msub><mo>E</mo><msub><mi>x</mi><mn>1</mn></msub></msub><mfenced><msub><mi>x</mi><mn>2</mn></msub></mfenced></mrow>' | |
def test_print_jacobi(): | |
assert mathml(jacobi(n, a, b, x), printer = 'presentation') == \ | |
'<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi><mi>b</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' | |
def test_print_gegenbauer(): | |
assert mathml(gegenbauer(n, a, x), printer = 'presentation') == \ | |
'<mrow><msubsup><mo>C</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' | |
def test_print_chebyshevt(): | |
assert mathml(chebyshevt(n, x), printer = 'presentation') == \ | |
'<mrow><msub><mo>T</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' | |
def test_print_chebyshevu(): | |
assert mathml(chebyshevu(n, x), printer = 'presentation') == \ | |
'<mrow><msub><mo>U</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' | |
def test_print_legendre(): | |
assert mathml(legendre(n, x), printer = 'presentation') == \ | |
'<mrow><msub><mo>P</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' | |
def test_print_assoc_legendre(): | |
assert mathml(assoc_legendre(n, a, x), printer = 'presentation') == \ | |
'<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' | |
def test_print_laguerre(): | |
assert mathml(laguerre(n, x), printer = 'presentation') == \ | |
'<mrow><msub><mo>L</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' | |
def test_print_assoc_laguerre(): | |
assert mathml(assoc_laguerre(n, a, x), printer = 'presentation') == \ | |
'<mrow><msubsup><mo>L</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' | |
def test_print_hermite(): | |
assert mathml(hermite(n, x), printer = 'presentation') == \ | |
'<mrow><msub><mo>H</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' | |
def test_mathml_SingularityFunction(): | |
assert mathml(SingularityFunction(x, 4, 5), printer='presentation') == \ | |
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \ | |
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>5</mn></msup>' | |
assert mathml(SingularityFunction(x, -3, 4), printer='presentation') == \ | |
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \ | |
'<mo>+</mo><mn>3</mn></mrow></mfenced><mn>4</mn></msup>' | |
assert mathml(SingularityFunction(x, 0, 4), printer='presentation') == \ | |
'<msup><mfenced close="⟩" open="⟨"><mi>x</mi></mfenced>' \ | |
'<mn>4</mn></msup>' | |
assert mathml(SingularityFunction(x, a, n), printer='presentation') == \ | |
'<msup><mfenced close="⟩" open="⟨"><mrow><mrow>' \ | |
'<mo>-</mo><mi>a</mi></mrow><mo>+</mo><mi>x</mi></mrow></mfenced>' \ | |
'<mi>n</mi></msup>' | |
assert mathml(SingularityFunction(x, 4, -2), printer='presentation') == \ | |
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \ | |
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-2</mn></msup>' | |
assert mathml(SingularityFunction(x, 4, -1), printer='presentation') == \ | |
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \ | |
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-1</mn></msup>' | |
def test_mathml_matrix_functions(): | |
from sympy.matrices import Adjoint, Inverse, Transpose | |
X = MatrixSymbol('X', 2, 2) | |
Y = MatrixSymbol('Y', 2, 2) | |
assert mathml(Adjoint(X), printer='presentation') == \ | |
'<msup><mi>X</mi><mo>†</mo></msup>' | |
assert mathml(Adjoint(X + Y), printer='presentation') == \ | |
'<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>†</mo></msup>' | |
assert mathml(Adjoint(X) + Adjoint(Y), printer='presentation') == \ | |
'<mrow><msup><mi>X</mi><mo>†</mo></msup><mo>+</mo><msup>' \ | |
'<mi>Y</mi><mo>†</mo></msup></mrow>' | |
assert mathml(Adjoint(X*Y), printer='presentation') == \ | |
'<msup><mfenced><mrow><mi>X</mi><mo>⁢</mo>' \ | |
'<mi>Y</mi></mrow></mfenced><mo>†</mo></msup>' | |
assert mathml(Adjoint(Y)*Adjoint(X), printer='presentation') == \ | |
'<mrow><msup><mi>Y</mi><mo>†</mo></msup><mo>⁢' \ | |
'</mo><msup><mi>X</mi><mo>†</mo></msup></mrow>' | |
assert mathml(Adjoint(X**2), printer='presentation') == \ | |
'<msup><mfenced><msup><mi>X</mi><mn>2</mn></msup></mfenced><mo>†</mo></msup>' | |
assert mathml(Adjoint(X)**2, printer='presentation') == \ | |
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mn>2</mn></msup>' | |
assert mathml(Adjoint(Inverse(X)), printer='presentation') == \ | |
'<msup><mfenced><msup><mi>X</mi><mn>-1</mn></msup></mfenced><mo>†</mo></msup>' | |
assert mathml(Inverse(Adjoint(X)), printer='presentation') == \ | |
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mn>-1</mn></msup>' | |
assert mathml(Adjoint(Transpose(X)), printer='presentation') == \ | |
'<msup><mfenced><msup><mi>X</mi><mo>T</mo></msup></mfenced><mo>†</mo></msup>' | |
assert mathml(Transpose(Adjoint(X)), printer='presentation') == \ | |
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mo>T</mo></msup>' | |
assert mathml(Transpose(Adjoint(X) + Y), printer='presentation') == \ | |
'<msup><mfenced><mrow><msup><mi>X</mi><mo>†</mo></msup>' \ | |
'<mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>' | |
assert mathml(Transpose(X), printer='presentation') == \ | |
'<msup><mi>X</mi><mo>T</mo></msup>' | |
assert mathml(Transpose(X + Y), printer='presentation') == \ | |
'<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>' | |
def test_mathml_special_matrices(): | |
from sympy.matrices import Identity, ZeroMatrix, OneMatrix | |
assert mathml(Identity(4), printer='presentation') == '<mi>𝕀</mi>' | |
assert mathml(ZeroMatrix(2, 2), printer='presentation') == '<mn>𝟘</mn>' | |
assert mathml(OneMatrix(2, 2), printer='presentation') == '<mn>𝟙</mn>' | |
def test_mathml_piecewise(): | |
from sympy.functions.elementary.piecewise import Piecewise | |
# Content MathML | |
assert mathml(Piecewise((x, x <= 1), (x**2, True))) == \ | |
'<piecewise><piece><ci>x</ci><apply><leq/><ci>x</ci><cn>1</cn></apply></piece><otherwise><apply><power/><ci>x</ci><cn>2</cn></apply></otherwise></piecewise>' | |
raises(ValueError, lambda: mathml(Piecewise((x, x <= 1)))) | |
def test_issue_17857(): | |
assert mathml(Range(-oo, oo), printer='presentation') == \ | |
'<mfenced close="}" open="{"><mi>…</mi><mn>-1</mn><mn>0</mn><mn>1</mn><mi>…</mi></mfenced>' | |
assert mathml(Range(oo, -oo, -1), printer='presentation') == \ | |
'<mfenced close="}" open="{"><mi>…</mi><mn>1</mn><mn>0</mn><mn>-1</mn><mi>…</mi></mfenced>' | |
def test_float_roundtrip(): | |
x = sympify(0.8975979010256552) | |
y = float(mp.doprint(x).strip('</cn>')) | |
assert x == y | |