Spaces:
Sleeping
Sleeping
from sympy.core import (pi, oo, symbols, Rational, Integer, GoldenRatio, | |
EulerGamma, Catalan, Lambda, Dummy, S, Eq, Ne, Le, | |
Lt, Gt, Ge, Mod) | |
from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt, | |
sinh, cosh, tanh, asin, acos, acosh, Max, Min) | |
from sympy.testing.pytest import raises | |
from sympy.printing.jscode import JavascriptCodePrinter | |
from sympy.utilities.lambdify import implemented_function | |
from sympy.tensor import IndexedBase, Idx | |
from sympy.matrices import Matrix, MatrixSymbol | |
from sympy.printing.jscode import jscode | |
x, y, z = symbols('x,y,z') | |
def test_printmethod(): | |
assert jscode(Abs(x)) == "Math.abs(x)" | |
def test_jscode_sqrt(): | |
assert jscode(sqrt(x)) == "Math.sqrt(x)" | |
assert jscode(x**0.5) == "Math.sqrt(x)" | |
assert jscode(x**(S.One/3)) == "Math.cbrt(x)" | |
def test_jscode_Pow(): | |
g = implemented_function('g', Lambda(x, 2*x)) | |
assert jscode(x**3) == "Math.pow(x, 3)" | |
assert jscode(x**(y**3)) == "Math.pow(x, Math.pow(y, 3))" | |
assert jscode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ | |
"Math.pow(3.5*2*x, -x + Math.pow(y, x))/(Math.pow(x, 2) + y)" | |
assert jscode(x**-1.0) == '1/x' | |
def test_jscode_constants_mathh(): | |
assert jscode(exp(1)) == "Math.E" | |
assert jscode(pi) == "Math.PI" | |
assert jscode(oo) == "Number.POSITIVE_INFINITY" | |
assert jscode(-oo) == "Number.NEGATIVE_INFINITY" | |
def test_jscode_constants_other(): | |
assert jscode( | |
2*GoldenRatio) == "var GoldenRatio = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17) | |
assert jscode(2*Catalan) == "var Catalan = %s;\n2*Catalan" % Catalan.evalf(17) | |
assert jscode( | |
2*EulerGamma) == "var EulerGamma = %s;\n2*EulerGamma" % EulerGamma.evalf(17) | |
def test_jscode_Rational(): | |
assert jscode(Rational(3, 7)) == "3/7" | |
assert jscode(Rational(18, 9)) == "2" | |
assert jscode(Rational(3, -7)) == "-3/7" | |
assert jscode(Rational(-3, -7)) == "3/7" | |
def test_Relational(): | |
assert jscode(Eq(x, y)) == "x == y" | |
assert jscode(Ne(x, y)) == "x != y" | |
assert jscode(Le(x, y)) == "x <= y" | |
assert jscode(Lt(x, y)) == "x < y" | |
assert jscode(Gt(x, y)) == "x > y" | |
assert jscode(Ge(x, y)) == "x >= y" | |
def test_Mod(): | |
assert jscode(Mod(x, y)) == '((x % y) + y) % y' | |
assert jscode(Mod(x, x + y)) == '((x % (x + y)) + (x + y)) % (x + y)' | |
p1, p2 = symbols('p1 p2', positive=True) | |
assert jscode(Mod(p1, p2)) == 'p1 % p2' | |
assert jscode(Mod(p1, p2 + 3)) == 'p1 % (p2 + 3)' | |
assert jscode(Mod(-3, -7, evaluate=False)) == '(-3) % (-7)' | |
assert jscode(-Mod(p1, p2)) == '-(p1 % p2)' | |
assert jscode(x*Mod(p1, p2)) == 'x*(p1 % p2)' | |
def test_jscode_Integer(): | |
assert jscode(Integer(67)) == "67" | |
assert jscode(Integer(-1)) == "-1" | |
def test_jscode_functions(): | |
assert jscode(sin(x) ** cos(x)) == "Math.pow(Math.sin(x), Math.cos(x))" | |
assert jscode(sinh(x) * cosh(x)) == "Math.sinh(x)*Math.cosh(x)" | |
assert jscode(Max(x, y) + Min(x, y)) == "Math.max(x, y) + Math.min(x, y)" | |
assert jscode(tanh(x)*acosh(y)) == "Math.tanh(x)*Math.acosh(y)" | |
assert jscode(asin(x)-acos(y)) == "-Math.acos(y) + Math.asin(x)" | |
def test_jscode_inline_function(): | |
x = symbols('x') | |
g = implemented_function('g', Lambda(x, 2*x)) | |
assert jscode(g(x)) == "2*x" | |
g = implemented_function('g', Lambda(x, 2*x/Catalan)) | |
assert jscode(g(x)) == "var Catalan = %s;\n2*x/Catalan" % Catalan.evalf(17) | |
A = IndexedBase('A') | |
i = Idx('i', symbols('n', integer=True)) | |
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x))) | |
assert jscode(g(A[i]), assign_to=A[i]) == ( | |
"for (var i=0; i<n; i++){\n" | |
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n" | |
"}" | |
) | |
def test_jscode_exceptions(): | |
assert jscode(ceiling(x)) == "Math.ceil(x)" | |
assert jscode(Abs(x)) == "Math.abs(x)" | |
def test_jscode_boolean(): | |
assert jscode(x & y) == "x && y" | |
assert jscode(x | y) == "x || y" | |
assert jscode(~x) == "!x" | |
assert jscode(x & y & z) == "x && y && z" | |
assert jscode(x | y | z) == "x || y || z" | |
assert jscode((x & y) | z) == "z || x && y" | |
assert jscode((x | y) & z) == "z && (x || y)" | |
def test_jscode_Piecewise(): | |
expr = Piecewise((x, x < 1), (x**2, True)) | |
p = jscode(expr) | |
s = \ | |
"""\ | |
((x < 1) ? ( | |
x | |
) | |
: ( | |
Math.pow(x, 2) | |
))\ | |
""" | |
assert p == s | |
assert jscode(expr, assign_to="c") == ( | |
"if (x < 1) {\n" | |
" c = x;\n" | |
"}\n" | |
"else {\n" | |
" c = Math.pow(x, 2);\n" | |
"}") | |
# Check that Piecewise without a True (default) condition error | |
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) | |
raises(ValueError, lambda: jscode(expr)) | |
def test_jscode_Piecewise_deep(): | |
p = jscode(2*Piecewise((x, x < 1), (x**2, True))) | |
s = \ | |
"""\ | |
2*((x < 1) ? ( | |
x | |
) | |
: ( | |
Math.pow(x, 2) | |
))\ | |
""" | |
assert p == s | |
def test_jscode_settings(): | |
raises(TypeError, lambda: jscode(sin(x), method="garbage")) | |
def test_jscode_Indexed(): | |
n, m, o = symbols('n m o', integer=True) | |
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o) | |
p = JavascriptCodePrinter() | |
p._not_c = set() | |
x = IndexedBase('x')[j] | |
assert p._print_Indexed(x) == 'x[j]' | |
A = IndexedBase('A')[i, j] | |
assert p._print_Indexed(A) == 'A[%s]' % (m*i+j) | |
B = IndexedBase('B')[i, j, k] | |
assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k) | |
assert p._not_c == set() | |
def test_jscode_loops_matrix_vector(): | |
n, m = symbols('n m', integer=True) | |
A = IndexedBase('A') | |
x = IndexedBase('x') | |
y = IndexedBase('y') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
s = ( | |
'for (var i=0; i<m; i++){\n' | |
' y[i] = 0;\n' | |
'}\n' | |
'for (var i=0; i<m; i++){\n' | |
' for (var j=0; j<n; j++){\n' | |
' y[i] = A[n*i + j]*x[j] + y[i];\n' | |
' }\n' | |
'}' | |
) | |
c = jscode(A[i, j]*x[j], assign_to=y[i]) | |
assert c == s | |
def test_dummy_loops(): | |
i, m = symbols('i m', integer=True, cls=Dummy) | |
x = IndexedBase('x') | |
y = IndexedBase('y') | |
i = Idx(i, m) | |
expected = ( | |
'for (var i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n' | |
' y[i_%(icount)i] = x[i_%(icount)i];\n' | |
'}' | |
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index} | |
code = jscode(x[i], assign_to=y[i]) | |
assert code == expected | |
def test_jscode_loops_add(): | |
n, m = symbols('n m', integer=True) | |
A = IndexedBase('A') | |
x = IndexedBase('x') | |
y = IndexedBase('y') | |
z = IndexedBase('z') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
s = ( | |
'for (var i=0; i<m; i++){\n' | |
' y[i] = x[i] + z[i];\n' | |
'}\n' | |
'for (var i=0; i<m; i++){\n' | |
' for (var j=0; j<n; j++){\n' | |
' y[i] = A[n*i + j]*x[j] + y[i];\n' | |
' }\n' | |
'}' | |
) | |
c = jscode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) | |
assert c == s | |
def test_jscode_loops_multiple_contractions(): | |
n, m, o, p = symbols('n m o p', integer=True) | |
a = IndexedBase('a') | |
b = IndexedBase('b') | |
y = IndexedBase('y') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
k = Idx('k', o) | |
l = Idx('l', p) | |
s = ( | |
'for (var i=0; i<m; i++){\n' | |
' y[i] = 0;\n' | |
'}\n' | |
'for (var i=0; i<m; i++){\n' | |
' for (var j=0; j<n; j++){\n' | |
' for (var k=0; k<o; k++){\n' | |
' for (var l=0; l<p; l++){\n' | |
' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\ | |
' }\n' | |
' }\n' | |
' }\n' | |
'}' | |
) | |
c = jscode(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) | |
assert c == s | |
def test_jscode_loops_addfactor(): | |
n, m, o, p = symbols('n m o p', integer=True) | |
a = IndexedBase('a') | |
b = IndexedBase('b') | |
c = IndexedBase('c') | |
y = IndexedBase('y') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
k = Idx('k', o) | |
l = Idx('l', p) | |
s = ( | |
'for (var i=0; i<m; i++){\n' | |
' y[i] = 0;\n' | |
'}\n' | |
'for (var i=0; i<m; i++){\n' | |
' for (var j=0; j<n; j++){\n' | |
' for (var k=0; k<o; k++){\n' | |
' for (var l=0; l<p; l++){\n' | |
' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\ | |
' }\n' | |
' }\n' | |
' }\n' | |
'}' | |
) | |
c = jscode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i]) | |
assert c == s | |
def test_jscode_loops_multiple_terms(): | |
n, m, o, p = symbols('n m o p', integer=True) | |
a = IndexedBase('a') | |
b = IndexedBase('b') | |
c = IndexedBase('c') | |
y = IndexedBase('y') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
k = Idx('k', o) | |
s0 = ( | |
'for (var i=0; i<m; i++){\n' | |
' y[i] = 0;\n' | |
'}\n' | |
) | |
s1 = ( | |
'for (var i=0; i<m; i++){\n' | |
' for (var j=0; j<n; j++){\n' | |
' for (var k=0; k<o; k++){\n' | |
' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\ | |
' }\n' | |
' }\n' | |
'}\n' | |
) | |
s2 = ( | |
'for (var i=0; i<m; i++){\n' | |
' for (var k=0; k<o; k++){\n' | |
' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\ | |
' }\n' | |
'}\n' | |
) | |
s3 = ( | |
'for (var i=0; i<m; i++){\n' | |
' for (var j=0; j<n; j++){\n' | |
' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\ | |
' }\n' | |
'}\n' | |
) | |
c = jscode( | |
b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i]) | |
assert (c == s0 + s1 + s2 + s3[:-1] or | |
c == s0 + s1 + s3 + s2[:-1] or | |
c == s0 + s2 + s1 + s3[:-1] or | |
c == s0 + s2 + s3 + s1[:-1] or | |
c == s0 + s3 + s1 + s2[:-1] or | |
c == s0 + s3 + s2 + s1[:-1]) | |
def test_Matrix_printing(): | |
# Test returning a Matrix | |
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)]) | |
A = MatrixSymbol('A', 3, 1) | |
assert jscode(mat, A) == ( | |
"A[0] = x*y;\n" | |
"if (y > 0) {\n" | |
" A[1] = x + 2;\n" | |
"}\n" | |
"else {\n" | |
" A[1] = y;\n" | |
"}\n" | |
"A[2] = Math.sin(z);") | |
# Test using MatrixElements in expressions | |
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0] | |
assert jscode(expr) == ( | |
"((x > 0) ? (\n" | |
" 2*A[2]\n" | |
")\n" | |
": (\n" | |
" A[2]\n" | |
")) + Math.sin(A[1]) + A[0]") | |
# Test using MatrixElements in a Matrix | |
q = MatrixSymbol('q', 5, 1) | |
M = MatrixSymbol('M', 3, 3) | |
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])], | |
[q[1,0] + q[2,0], q[3, 0], 5], | |
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]]) | |
assert jscode(m, M) == ( | |
"M[0] = Math.sin(q[1]);\n" | |
"M[1] = 0;\n" | |
"M[2] = Math.cos(q[2]);\n" | |
"M[3] = q[1] + q[2];\n" | |
"M[4] = q[3];\n" | |
"M[5] = 5;\n" | |
"M[6] = 2*q[4]/q[1];\n" | |
"M[7] = Math.sqrt(q[0]) + 4;\n" | |
"M[8] = 0;") | |
def test_MatrixElement_printing(): | |
# test cases for issue #11821 | |
A = MatrixSymbol("A", 1, 3) | |
B = MatrixSymbol("B", 1, 3) | |
C = MatrixSymbol("C", 1, 3) | |
assert(jscode(A[0, 0]) == "A[0]") | |
assert(jscode(3 * A[0, 0]) == "3*A[0]") | |
F = C[0, 0].subs(C, A - B) | |
assert(jscode(F) == "(A - B)[0]") | |