Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
from sympy.core.function import (Derivative, Function) | |
from sympy.core.numbers import oo | |
from sympy.core.symbol import symbols | |
from sympy.functions.elementary.exponential import exp | |
from sympy.functions.elementary.trigonometric import cos | |
from sympy.integrals.integrals import Integral | |
from sympy.functions.special.bessel import besselj | |
from sympy.functions.special.polynomials import legendre | |
from sympy.functions.combinatorial.numbers import bell | |
from sympy.printing.conventions import split_super_sub, requires_partial | |
from sympy.testing.pytest import XFAIL | |
def test_super_sub(): | |
assert split_super_sub("beta_13_2") == ("beta", [], ["13", "2"]) | |
assert split_super_sub("beta_132_20") == ("beta", [], ["132", "20"]) | |
assert split_super_sub("beta_13") == ("beta", [], ["13"]) | |
assert split_super_sub("x_a_b") == ("x", [], ["a", "b"]) | |
assert split_super_sub("x_1_2_3") == ("x", [], ["1", "2", "3"]) | |
assert split_super_sub("x_a_b1") == ("x", [], ["a", "b1"]) | |
assert split_super_sub("x_a_1") == ("x", [], ["a", "1"]) | |
assert split_super_sub("x_1_a") == ("x", [], ["1", "a"]) | |
assert split_super_sub("x_1^aa") == ("x", ["aa"], ["1"]) | |
assert split_super_sub("x_1__aa") == ("x", ["aa"], ["1"]) | |
assert split_super_sub("x_11^a") == ("x", ["a"], ["11"]) | |
assert split_super_sub("x_11__a") == ("x", ["a"], ["11"]) | |
assert split_super_sub("x_a_b_c_d") == ("x", [], ["a", "b", "c", "d"]) | |
assert split_super_sub("x_a_b^c^d") == ("x", ["c", "d"], ["a", "b"]) | |
assert split_super_sub("x_a_b__c__d") == ("x", ["c", "d"], ["a", "b"]) | |
assert split_super_sub("x_a^b_c^d") == ("x", ["b", "d"], ["a", "c"]) | |
assert split_super_sub("x_a__b_c__d") == ("x", ["b", "d"], ["a", "c"]) | |
assert split_super_sub("x^a^b_c_d") == ("x", ["a", "b"], ["c", "d"]) | |
assert split_super_sub("x__a__b_c_d") == ("x", ["a", "b"], ["c", "d"]) | |
assert split_super_sub("x^a^b^c^d") == ("x", ["a", "b", "c", "d"], []) | |
assert split_super_sub("x__a__b__c__d") == ("x", ["a", "b", "c", "d"], []) | |
assert split_super_sub("alpha_11") == ("alpha", [], ["11"]) | |
assert split_super_sub("alpha_11_11") == ("alpha", [], ["11", "11"]) | |
assert split_super_sub("w1") == ("w", [], ["1"]) | |
assert split_super_sub("wπ") == ("w", [], ["π"]) | |
assert split_super_sub("w11") == ("w", [], ["11"]) | |
assert split_super_sub("wππ") == ("w", [], ["ππ"]) | |
assert split_super_sub("wπ2π") == ("w", [], ["π2π"]) | |
assert split_super_sub("w1^a") == ("w", ["a"], ["1"]) | |
assert split_super_sub("Ο1") == ("Ο", [], ["1"]) | |
assert split_super_sub("Ο11") == ("Ο", [], ["11"]) | |
assert split_super_sub("Ο1^a") == ("Ο", ["a"], ["1"]) | |
assert split_super_sub("Οπ^Ξ±") == ("Ο", ["Ξ±"], ["π"]) | |
assert split_super_sub("Οπ2^3Ξ±") == ("Ο", ["3Ξ±"], ["π2"]) | |
assert split_super_sub("") == ("", [], []) | |
def test_requires_partial(): | |
x, y, z, t, nu = symbols('x y z t nu') | |
n = symbols('n', integer=True) | |
f = x * y | |
assert requires_partial(Derivative(f, x)) is True | |
assert requires_partial(Derivative(f, y)) is True | |
## integrating out one of the variables | |
assert requires_partial(Derivative(Integral(exp(-x * y), (x, 0, oo)), y, evaluate=False)) is False | |
## bessel function with smooth parameter | |
f = besselj(nu, x) | |
assert requires_partial(Derivative(f, x)) is True | |
assert requires_partial(Derivative(f, nu)) is True | |
## bessel function with integer parameter | |
f = besselj(n, x) | |
assert requires_partial(Derivative(f, x)) is False | |
# this is not really valid (differentiating with respect to an integer) | |
# but there's no reason to use the partial derivative symbol there. make | |
# sure we don't throw an exception here, though | |
assert requires_partial(Derivative(f, n)) is False | |
## bell polynomial | |
f = bell(n, x) | |
assert requires_partial(Derivative(f, x)) is False | |
# again, invalid | |
assert requires_partial(Derivative(f, n)) is False | |
## legendre polynomial | |
f = legendre(0, x) | |
assert requires_partial(Derivative(f, x)) is False | |
f = legendre(n, x) | |
assert requires_partial(Derivative(f, x)) is False | |
# again, invalid | |
assert requires_partial(Derivative(f, n)) is False | |
f = x ** n | |
assert requires_partial(Derivative(f, x)) is False | |
assert requires_partial(Derivative(Integral((x*y) ** n * exp(-x * y), (x, 0, oo)), y, evaluate=False)) is False | |
# parametric equation | |
f = (exp(t), cos(t)) | |
g = sum(f) | |
assert requires_partial(Derivative(g, t)) is False | |
f = symbols('f', cls=Function) | |
assert requires_partial(Derivative(f(x), x)) is False | |
assert requires_partial(Derivative(f(x), y)) is False | |
assert requires_partial(Derivative(f(x, y), x)) is True | |
assert requires_partial(Derivative(f(x, y), y)) is True | |
assert requires_partial(Derivative(f(x, y), z)) is True | |
assert requires_partial(Derivative(f(x, y), x, y)) is True | |
def test_requires_partial_unspecified_variables(): | |
x, y = symbols('x y') | |
# function of unspecified variables | |
f = symbols('f', cls=Function) | |
assert requires_partial(Derivative(f, x)) is False | |
assert requires_partial(Derivative(f, x, y)) is True | |